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A B S T R A C T

When myocardial walls experience stress due to cardiovascular diseases, like heart failure, hormone N-terminal
pro-B-type natriuretic peptide (NT-proBNP) is secreted into the blood. Early detection of NT-proBNP can assist
diagnosis of heart failure and enable early medical intervention. A simple, cost-effective detection technique
such as the widely used fluorescence imaging immunoassay is yet to be developed to detect clinically relevant
levels of NT-proBNP. In this work, we demonstrate photonic crystal-enhanced fluorescence imaging im-
munoassay using diatom biosilica, which is capable of detecting low levels of NT-proBNP in solution with the
concentration range of 0˜100 pg/mL. By analyzing the fluorescence images in the spatial and spatial frequency
domain with principle component analysis (PCA) and partial least squares regression (PLSR) algorithms, we
create a predictive model that achieves great linearity with a validation R2 value of 0.86 and a predictive root
mean square error of 14.47, allowing for good analyte quantification. To demonstrate the potential of the
fluorescence immunoassay biosensor for clinical usage, we conducted qualitative screening of high and low
concentrations of NT-proBNP in human plasma. A more advanced machine learning algorithm, the support
vector machine classification, was paired with the PCA and trained by 160 fluorescence images. In the 40 testing
images, we achieved excellent specificity of 93%, as well as decent accuracy and sensitivity of 78% and 65%
respectively. Therefore, the photonic crystal-enhanced fluorescence imaging immunoassay reported in this ar-
ticle is feasible to screen clinically relevant levels of NT-proBNP in body fluid and evaluate the risk of heart
failure.

1. Introduction

According to the American Heart Association, in 2009, one in nine
deaths cited heart failure (HF) as a contributing cause and in 2016,
about 5.7 million Americans suffered from HF [1]. Total direct medical
costs of HF in the US are projected to be $42.9 billion by 2020 [2]. The
need for accurate, inexpensive and early detection of HF is of critical
importance. When an individual has HF, the myocardial wall experi-
ences stress and the prohormone B-type natriuretic peptide (proBNP) is
cleaved releasing N-terminal proBNP (NT-proBNP) and BNP. Both are
recommended by the European Society of Cardiology (ESC) as analytes
to aid in the diagnosis of HF [3]. However, the half-life-time of NT-
proBNP is nearly 6× longer than that of BNP, making it a better

biomarker for detection [4]. The ESC directs that the upper limit of
normal levels of the biomarker is 125 pg/mL and values lower than this
can be used to rule out the possibility of HF [3]. Levels of NT-
proBNP>450 pg/mL can be used to “rule in” HF [5].

The most common method of detecting NT-proBNP is by performing
electrochemiluminescence (ECL) paired with an immunoassay. This
method is recommended and used by respected institutions such as the
Mayo Clinic [6,7]. ECL is effective, but it also requires expensive, so-
phisticated instrumentation and highly trained personnel. Fluorescence
imaging, often paired with an immunoassay, is a biosensing technique
that could be used in place of ECL. The immunoassay allows for high
degrees of specificity due to the specific antibody-antigen interaction,
allowing capture or separation of the analyte from the surrounding
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sample matrix. Fluorescence imaging sensors are rationally designed
such that the presence of the analyte induces a change in fluorescence
intensity, which is caused by specific analyte labeling with a fluor-
ophore [8–10]) or quenching inherent sample fluorescence [11,12].

Fluorescence imaging employs imagers, either consumer or la-
boratory grade, to monitor the change in fluorescence intensity. The
intensity depends on the concentration of analyte present, and in some
applications, detection and quantification can be achieved even down
to single molecule levels [13,14]. Furthermore, fluorescence imaging
can perform large area measurements while maintaining spatial in-
formation, thus allowing parallel sensing of multiple sensors for high-
throughput applications. This powerful sensing technique has been
applied to the detection of NT-proBNP [15,16]. However, Lee et al. [15]
achieved detection of the biomarker only to 5 ng/mL, which is sig-
nificantly above clinically relevant levels. Wilkins et al. [16] success-
fully detected NT-proBNP down to 50 pg/mL but required high effi-
ciency quantum dots containing toxic cadmium sulfide to achieve this
level of detection. Therefore, safe detection of NT-proBNP at clinically
relevant levels of detection still requires further fluorescence signal
enhancement.

In recent years, plasmonic structures such as nanoparticles, na-
norods and other nanostructures have been employed to enhance the
local electromagnetic field resulting in enhanced fluorophore excitation
[17–19]. These techniques provide fluorescence enhancement but often
suffer highly localized effects. Uniform photonic crystals have also been
used as suitable fluorescence enhancing substrates due to their optical
field enhancement and large sensing area-to-volume ratio [20–23].
However, rationally designed photonic crystals generally require
cleanroom technologies to fabricate and often experience issues with
surface functionalization [24,25]. Engineered fluorophores, such as
quantum dots, have been fabricated and used to achieve higher
quantum efficiencies and stronger fluorescence, but these often require
toxic materials such as cadmium [26,27].

Other than the concern of sensitivity, random fluctuation of the
fluorescence signals brings a great challenge for analyte quantization.
Feature extraction, statistical regressions and classifications are the
main tasks of statistical machine learning with each algorithm being
used to improve the clarity of a dataset for quantitative and qualitative
analyses. Feature extraction techniques, such as principle component
analysis (PCA), reduce the dimensionality of data, enabling more ef-
fective visualization and analysis. Regression analyses, like the partial
least squares regression (PLSR) or support vector regression, are
common analytical techniques that have been applied to fluorescence
biosensing and allow for the creation of accurate calibration curves to
quantitatively predict the concentration of an analyte [28–30]. Classi-
fication techniques such as the linear discriminant analysis, k-nearest
neighbors (kNN) or support vector machines (SVM) can be used to train
a model capable of accurately grouping data points by similar char-
acteristics and are effective for qualitative and semi-quantitative clas-
sification. Implementation of classification techniques have enabled
successful analyte detection with fluorescence biosensing [31–33].

In this work, we demonstrated a photonic crystal-enhanced fluor-
escence imaging immunoassay biosensor capable of detecting clinically
relevant levels of NT-proBNP and implemented machine learning-as-
sisted analyte quantization. Different than artificial photonic crystals
made by top-down nanofabrication techniques, our cardiovascular
biomarker sensor employs diatom biosilica to enhance the fluorescence
signal. Diatoms are single-celled microalgae that biologically fabricate
porous silica shells called frustules. The periodic, nanostructured pore
arrays of diatom frustules can enable natural photonic crystal behavior.
Our group has proven that diatom biosilica is capable of enhancing
Raman and fluorescence signals due to their photonic crystal structure
as well as their large and super-hydrophilic surface, thus offering ex-
clusive advantages for biosensing, particularly for immunoassay
[34–37]. The biosensor fabrication begins with cost-effective algae
cultivation to grow diatoms. Cellular organic matter is removed, and

the isolated biosilica shells are deposited onto a glass slide as a dis-
persed monolayer thin film. A typical sandwich immunoassay process is
performed to functionalize the substrate with antibodies, selectively
capturing the analyte NT-proBNP and tagged with fluorophore-labeled
antibodies. The diatom biosilica integrated with our sensor offers sig-
nificant fluorescence signal enhancement for clear imaging. Following
the data acquisition, a simple arithmetic average fluorescence intensity
analysis is performed, resulting in the detection of NT-proBNP to
clinically relevant levels but with difficulty in differentiation at lower
concentrations. To improve this, feature extraction and regression
analyses obtain an excellent calibration curve for the NT-proBNP con-
centration with good linearity and differentiation. When challenged by
24 test images, a validation R2 value of 0.86 and a predictive root mean
square error of 14.47 was achieved, allowing for good analyte quanti-
fication. Lastly, we detect NT-proBNP in human plasma and use feature
extraction and classification to qualitatively distinguish between high
and low concentrations of NT-proBNP, creating a screening mechanism
for diagnostically ruling in or out heart failure. The classification model
was trained using 160 fluorescence images and when applied to 40 test
images, achieves excellent specificity of 93%, and decent accuracy and
sensitivity of 78% and 65% respectively. Therefore, the synergistic in-
tegration of the photonic crystal-enhanced fluorescence imaging im-
munoassay with machine-learning analysis techniques has led to ef-
fective detection of cardiovascular biomarker NT-proBNP, which can
play a key role for screening individuals with heart failure risk.

2. Materials and methods

2.1. Diatom-based NT-proBNP sensor fabrication

The fabrication follows our earlier work with minor modifications
[37]. Diatom culturing and isolation techniques as well as populating a
coverslip are described in the Supporting Information. Scanning elec-
tron microscopy (SEM) images of the coverslips are shown in Fig. 1(a
and b) and discussed in the Supporting Information. The process of the
sandwich type immunoassay is outlined in the schematic in Fig. 1(c)
below.

Briefly, a 2.2×2.2 cm glass coverslip with diatom frustule mass
coverage of 5 μg/cm2 was first submerged in a mixture of 10mL me-
thanol, 500 μL of 99% acetic acid and 150 μL of 99% (3-Aminopropyl)-
triethoxysilane (APTES) for 30min at room temperature to populate the
surface with free amine groups. The sample was rinsed with acetone
and ethanol and dried with nitrogen. The sample was then submerged
in 2% glutaraldehyde (GA), a homobifunctional crosslinker, in phos-
phate buffered saline (PBS) for 2 h at room temperature to react with
the free amine group and to cover the surface with aldehyde groups.
Following a rinsing with 20mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES) and deionized water, the glass cov-
erslip was dried with nitrogen gas flow and diced into multiple
5×5mm sensors. Each sensor then had 1 μL of 0.1mg/mL of the an-
tibody, anti-proBNP, dropcast onto its surface. It was left at 4 °C for 6 h
to allow the surface to be functionalized with the antibody. The sample
was again rinsed with HEPES and water and dried with nitrogen gas.
Next, the sample was submerged in 1mg/mL bovine serum albumin
(BSA) in PBS for 6 h at 4 °C to block all the remaining aldehyde groups.
This decreases nonspecific binding and enhances the detection specifi-
city of the immunoassay sensor. Again, the sample was rinsed with
HEPES and water, and dried by nitrogen gas. At this point, the func-
tionalized immunoassay sensor was ready for detection. The detection
was performed by submerging the sample in a solution of NT-proBNP
analyte in either PBS or human plasma. This step was performed in
solution volumes of 900mL and 400 μL for the buffer and plasma re-
spectively. The sensor was kept in the solution for 2 h at room tem-
perature to allow for immune-recognition of the antibody-antigen pair.
After another rinsing with HEPES and water, the sample had 1 μL of
0.25mg/mL anti-NT-proBNP conjugated with fluorescein dropcast onto
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the surface, where it was left for 4 h at 4 °C, thus labeling the bound
antigens with fluorophore labeled antibodies and completing the im-
mune-sensing process.

2.2. Fluorescence image preprocessing and processing

The details about the fluorescence microscope, light source, and
image capture parameters are described in the Supporting Information.
The acquired optical and fluorescence images were saved as. tiff files
and imported into Matlab to be prepared for processing, following the
similar approach outlined in our previous work [37], which is described
in Fig. 2. Optical and fluorescence images were first superimposed on
top of one another and aligned. Frustules in the image were then circled
and a mask was created in the shape of the diatom shell. This mask was
applied to the original fluorescence image, leaving just the frustule with

the remainder of the background zeroed out. Once the fluorescence
image was masked, it was cropped to a uniform size with the frustule in
the center. Another set of images were constructed from the original
image with the frustules zeroed, leaving only the fluorescence in-
formation on glass. These spatial domain images were used to analyze
the fluorescence signal on glass and compare it to that found on diatom
frustule.

After the diatom frustules from the fluorescence image were masked
and cropped, the power spectral density (PSD) of each image was ob-
tained by performing the two-dimensional fast Fourier transform (FFT)
and taking the square of the absolute value in the spatial frequency
domain. The image was shifted to move the zero-frequency component
to the middle of the image and the natural log-scale was taken.

Fig. 1. SEM image of diatom frustule-populated glass slide (a) and zoomed in on a single frustule (b). Schematic view of diatom-based immunoassay for NT-proBNP
detection (c).

Fig. 2. Schematic view of the preprocessing applied to the fluorescence images to prepare the images to be analyzed.
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2.3. Statistical regression calibration curve creation

To create the calibration curve for solution-based NT-proBNP sen-
sing, PCA was paired with PLSR. The model was created by first, using
Matlab to find the average fluorescence intensity for each concentration
by finding the average intensity of each PSD of the frequency domain
image and taking the total average. Once the average intensity for each
concentration was determined, 30 images with average intensities
closest to the concentration’s average fluorescence intensity were se-
lected. This was done for each concentration to remove any outliers and
resulted in a dataset of 30 images from each concentration. Using the
built-in Matlab functions, the principle components (PCs) were de-
termined and the first three were used in PLSR. A 5-fold cross-valida-
tion was used where 80% of the images were used to train a model and
20% were used to test the model.

From the training and test regressions, the coefficient of determi-
nation (R2) and the root mean square error (RMSE) were calculated
from the 5-fold cross-validations and were averaged. The equations for
these values are shown in the Supporting Information. The RMSE is a
measure of the average error predicted within the dataset and explains
how spread out the data is and the R2 is a measure of how good of a fit
the regression gives. Generally, higher R2 (but no more than 1) and
lower RMSE values means better regression performance. Discussion of
our created model is given in Section 3.3.

2.4. Qualitative screening procedure

To perform the qualitative screening of NT-proBNP in human
plasma, the data preparation was similar to that of the regression
analysis but 100 frequency domain images at high and low con-
centrations were chosen instead of 30 due to our larger plasma-based
measurements dataset. PCA was performed on the images and classifi-
cation algorithms including kNN and SVM were used in this analysis.
kNN was achieved using Matlab’s built-in function and SVM classifi-
cation was performed using a common SVM library, libSVM [38]. The
accuracy, sensitivity and specificity for each classification algorithm
were calculated for various numbers of PCs using a 5-fold cross-vali-
dation and the average of each statistic were compared and discussed in

Section 3.4 below. These metrics are defined thoroughly in our Sup-
porting Information. Briefly, the model classifies the dataset into a
positive and negative class, which correspond to the high concentration
and low concentration, respectively. Accuracy is a measure of how
many measurements the model correctly classified. Sensitivity is a
measure of the number of correctly classified positive measurements,
and specificity describes the number of correctly classified negative
measurements. Each of these metrics range from 0 to 1 with 1 being
perfect classification.

3. Results and discussion

3.1. Cardiovascular disease biosensing mechanism

The sandwich immunoassay process used here is one that is fairly
well understood and accepted. The diatom-populated glass slide is first
aminated using the APTES, resulting in free amine groups on its surface.
The homobifunctional crosslinker GA is then introduced. This molecule
contains two aldehyde groups, one of which easily reacts with the free
amine group, leaving the other free, thus populating the surface with
free aldehyde groups. These aldehydes easily react with amine groups
on the antibody, anti-NT-proBNP, and the protein BSA. The substrate is
populated with capture antibodies, after which, BSA is used to block the
remaining active aldehydes to reduce nonspecific binding. The analyte
is then introduced and selectively binds with the capture antibody af-
fixed to the substrate through immunorecognition. Lastly, antibodies
labeled with a fluorescent tag (anti-NT-proBNP-FITC) are introduced,
where they bind with the antigen and complete the sandwich structure.
At this point, the sensing event has taken place and the fluorescence can
now be measured. The characterization of this substrate is discussed in
more depth in the Supporting Information.

3.2. Average intensity analysis

To analyze the efficacy of our diatom-based fluorescence NT-
proBNP biosensor, the immunoassay, image collection and preproces-
sing of the fluorescence images were performed as explained in Sections
2.1 and 2.2 above, followed by an average intensity analysis. To begin,

Fig. 3. A comparison plot of average fluorescence intensity on diatom biosilica and glass (a). Representative fluorescence images of the frustules (b).
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the average fluorescence intensity of each spatial domain image was
calculated for a given concentration. The median average intensity was
found, and images with an average fluorescence intensity greater than
one standard deviation away from the median were excluded as out-
liers. The average and standard deviation of the remaining images’
average fluorescence intensities were calculated for each concentration
using the preprocessed spatial domain images of diatom frustules as
well as the glass images. The results were plotted versus the analyte
concentration as shown in Fig. 3(a). Fig. 3(b) shows the representative
fluorescence images at those concentrations, which clearly highlights
the enhanced fluorescence emission from the diatom biosilica due to
the photonic crystal effect and surface effect. As can be seen in the
figures, the fluorescence intensity on frustule is at least 2×higher than
that on glass and validates the use of frustules for enhancing the
fluorophore’s signals.

Description of the fluorescence enhancing mechanism of frustules is
explained in the Supporting Information. Using this average fluores-
cence analysis, NT-proBNP concentration of 100 pg/mL is distinct since
the signal is clearly above the error bar of the negative test (zero ana-
lyte concentration). However, for lower concentrations of analyte
testing, the fluorescence signals are comparable to the error bar of the
negative test, making it difficult to differentiate. A more sophisticated
method of analysis is required to achieve better sensitivity and quan-
tization.

3.3. Quantitative statistical regression

While the average intensity analysis is simple and straightforward,
the calibration curve is nonlinear with large variation, either with or
without diatom frustules, resulting in a high limit of detection. Random
errors during the immunoassay process and the statistical nature of
fluorescence emission are the main causes of the error bars, which are
intrinsic to the fluorescence imaging immunoassay. More advanced
statistical analytical methods must be employed to improve the sensing
performance.

Statistical regressions were performed using spatial domain images
as well as the PSD of the spatial frequency domain images of pre-
processed diatom images. Fig. 4(a) shows the spatial frequency domain
images from the preprocessed diatom images. The central peak relates

to the zero-frequency component of the zeroed-out background and the
points in the image further from the center represent higher frequency
components of the diatom fluorescence image. The spike lines radiating
from the center represent fluorescence signals in the spatial domain
corresponding to the geometric feature of diatom frustules. For ex-
ample, the minor axis of the diatom in the spatial domain is represented
by the prominent line radiating from the center of the spatial frequency
domain image along the same axis.

The aim of the regression is to correlate the fluorescence intensity
and the analyte concentration. Optimal results were achieved by im-
plementing PCA feature extraction with PLSR. Comparing the regres-
sion results applied to the spatial and spatial frequency domain images,
spatial frequency domain images gave superior results and were thus
used in this analysis. This may be due to the fact that the intensity
variation among different concentrations in the spatial domain is slight,
as seen in Fig. 3(a). However, the spatial frequency domain is a more
detailed image space and is heavily influenced by changes in the spatial
domain. The slight change in fluorescence intensity in the spatial do-
main results in a much greater change in the spatial frequency domain.
PCA and PLSR rely on variation to differentiate analyte concentrations
and thus the greater change in the spatial frequency domain allows for
greater sensitivity of PCA and PLSR.

The number of PCs to include in the regression step affects the
quality of the model achieved. We swept the number of components to
include and compared their R2 values. This analysis is shown in our
Supporting Information. Optimal results were achieved using the first
three PCs and the training data are plotted in Fig. 4(b). The PLSR al-
gorithm creates a model which can then be applied to a test set. As
explained in Section 2.3, a 5-fold cross-validation was performed by
training a model using 80% of the images and testing that model on the
remaining 20% images. This allows verification of the utility of our
model for future quantification. The calculated calibration curve from
the training set was applied to the test dataset. The calibration fit, as
well as that obtained when validating the model, are shown in Fig. 4(c)
below. Applying this model to the test dataset, we achieved good lin-
earity with a R2 testing value of 0.86 and a predicted RMSE (RMSEP) of
14.47. The high R2 value and the low RMSEP indicate accurate quan-
tifications of NT-proBNP detection down to 19 pg/mL.

Fig. 4. Representative spatial frequency domain images of diatoms (a). The first three principle components of the images in the training dataset (b). Predictive
model achieved using optimized statistical regression parameters on the training dataset, and the prediction results by applying the model to the testing dataset (c).
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3.4. Qualitative classification of NT-proBNP in plasma

In real-world applications, the detection of NT-proBNP is performed
in a real biological fluid with competing biomolecules like proteins that
can obscure the signal. To prove the validity of our photonic crystal-
enhanced fluorescence imaging immunoassay for future clinical usage,
we performed the detection of NT-proBNP in human plasma. A quali-
tative classification screening was performed to determine the clinically
relevant level of high or low concentration of NT-proBNP. According to
the literature [3,5], if the NT-proBNP concentration is below 125 pg/
mL, it can be used to “rule out” heart failure. If the concentration is
above 450 pg/mL, it can be used to “rule in” heart failure. For this
classification, we combined measurements made at 10 and 50 pg/mL to
be considered a low concentration class and measurements made at
500 pg/mL was a high concentration class. To ensure the same number
of measurements were in each category, 50 images, with average in-
tensities closest to the mean average intensity, were selected from each
lower concentration. From the higher concentration, 100 measure-
ments were taken, again, with average intensities closest to the total
average intensity at this concentration.

The classification analysis was performed using PCA feature ex-
traction combined with two classification techniques which were
compared to find the best solution. The kNN and SVM are classification
techniques that have been applied to both fluorescence imaging and
spectroscopy biosensing [31–33]. kNN is a non-parametric classifica-
tion method. An unlabeled test sample is classified by a majority vote of
its k-nearest neighbors and the most frequent label is assigned to the
class of the output. SVM algorithm is a widely used supervised learning
method which can efficiently perform a non-linear classification using
the nonlinear kernel function and fitting the maximum-margin hyper-
plane in a transformed feature space.

The two classification algorithms were applied after PCA of the
spatial frequency domain images and parameters were swept to find the
optimal solution for each algorithm. A 5-fold cross-validation was again
performed to enable training of the model and testing. The parameters
for SVM were optimized and the results are shown in Fig. 5(a) is the
classification results from the training dataset and (b) is from the test
dataset. Both are plotted with respect to the first three PCs. The color of
each data point represents its actual concentration class and each point
with an “X” represents measurements that were incorrectly classified.

From these classifications, the accuracy, sensitivity, and specificity

were calculated as explained in Section 2.4 above. These are common
metrics that indicate the quality of the classification model where the
closer to 1 (but less than 1), the better the classification model. The
calculated metrics for the optimal solution for each classification
technique were obtained from each of the five cross-validations. The
metric averages and standard deviations are displayed in Table 1 and
the two classification methods were compared. It was found that using
SVM with enough PCs to account for 55% of the sample variation gave
the best results.

As can be seen above, the SVM model has a predictive accuracy and
sensitivity that are slightly lower than desired. However, the specificity,
of 93%, is excellent. The specificity is a measure of the model’s ability
to correctly classify negative measurements, in this case, the model can
successfully determine low concentrations of NT-proBNP. As can be
seen in Fig. 5 above, very few low concentration measurements were
classified inaccurately. This allows us to confidently classify low con-
centration samples and rule out the heart failure diagnosis. While this is
extremely useful, in our future work, we will continue to improve the
sensitivity to allow for better ruling in of heart failure.

4. Conclusion

NT-proBNP is a clinically important cardiovascular disease bio-
marker. A photonic crystal-enhanced fluorescence imaging im-
munoassay biosensor has been created for this analyte, capable of de-
tecting clinically relevant levels of NT-proBNP. Photonic diatom
frustules achieve fluorescence signal intensity enhancement of fluor-
ophores as high as 2×compared with those on the flat glass substrate.
Furthermore, using PLSR, a predictive model has been extracted and
validated on a test dataset showing excellent linearity with a R2 of 0.86
and a RMSEP of 14.47. This model can be applied to an unknown
measurement and quantify the analyte concentration far surpassing the
clinical detection requirement, with an excellent measurement accu-
racy. To prove the potential for clinical testing, the biosensor was
employed to screen NT-proBNP in human plasma and we were able to
successfully implement SVM classification with an excellent test spe-
cificity of 93% to rule out heart failure with further optimization being
done to improve its ability to rule in heart failure. In short, we have
successfully shown that diatom frustules can be used as fluorescence
imaging immunoassay platform to detect NT-proBNP. The statistical
regressions and classifications we have developed can be used for the

Fig. 5. Classification results of training (a) and test dataset (b) plotted with respect to the first three principle components extracted using PCA. The X’s represent
measurements that were incorrectly classified.

Table 1
Binary classification results from NT-proBNP detection in plasma.

Training Testing

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

SVM 0.933 ± 0.015 0.870 ± 0.030 0.995 ± 0.007 0.775 ± 0.034 0.650 ± 0.071 0.930 ± 0.045
kNN 0.806 ± 0.019 0.813 ± 0.044 0.800 ± 0.039 0.605 ± 0.054 0.590 ± 0.129 0.620 ± 0.144
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detection and classification of NT-proBNP levels. This easy-to-use and
cost-effective immunoassay can achieve clinically relevant levels of
detection while avoiding the complexity of current ECL method of de-
tection.
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