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In this Letter, we investigate the slow-light effect of sub-
wavelength diffraction gratings via the Rayleigh anomaly
using a fully analytical approach without needing to consider
specific grating structures. Our results show that the local
group velocity of the transmitted light can be significantly
reduced due to the optical vortex, which can inspire a new
mechanism to enhance light–matter interactions for optical
sensing and photodetection. However, the slow-light effect
will diminish as the transmitted light propagates farther from
the grating surface, and the slowdown factor decreases as the
grating size shrinks. © 2015 Optical Society of America
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Subwavelength structures; (260.2110) Electromagnetic optics.
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Diffraction gratings change the direction of incoming light [1].
The Rayleigh anomaly (sometimes called theWood or Rayleigh–
Wood anomaly) indicates the phenomenon when diffracted
lights are directed perpendicular to the surface normal of the
grating [2–4]. Recently, it has attracted strong research interest
due to its interplay with surface plasmon polariton (SPP) waves
[5–13]. Applications such as extraordinary transmission (EOT)
[11] and high-sensitivity optical sensors [9] have already been
proposed and demonstrated. The interaction between SPP waves
and the Rayleigh anomaly will result in a highly localized optical
field that is determined by the decaying SPP waves, typically
on the order of one wavelength. Interestingly, people find that
Rayleigh anomaly alone can exhibit unique characteristics that
are distinctively different from SPP waves. In this Letter, we
explicitly point out that the Rayleigh anomaly can slow down
the group velocity of the transmitted light, similar to the effect
from photonic crystal waveguides [14] and plasmonic wave-
guide gratings [15]. More importantly, this slow light effect can
extend much farther from the grating surface than the SPP
waves. This can increase the interaction time between light and
matter over a long path, which contrasts with conventional
plasmonic biosensing relying on nano-scale hot-spots [16], and
the comparison has been discussed in [17,18]. Therefore, the slow
light effect of RA can be applied to the realization of enhanced

optical sensing (especially infrared absorption of gases) and
photon detection close to the bandgap of semiconductors.
However, we found that both the slowdown factor and the ef-
fective range depend on the grating size. Therefore, we further
investigate the finite-size effect of gratings that is unavoidable in
actual applications.

We begin our discussion with the grating shown in Fig. 1(a).
It has a period Lg and can be made of dielectrics or metals. If it
is metallic, we assume further that it is not thick enough for the
perforations between metallic grooves to guide SPP waves along
the z direction. Since our target applications are sensors utiliz-
ing the enhanced interaction between slow light and objects in
free space, we limit our attention to the transmission–type gra-
ting. A TM-polarized light, propagating in the �z direction, is
assumed to be normally incident to this grating. Since the gra-
ting is periodic infinitely, the magnetic field distribution at its
exit plane (taken as z � 0) can be expanded as
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Fig. 1. Geometry of the (a) infinite and (b) finite gratings. In (a),
the transmitted light has only three wave vectors (see the blue and
black unfilled arrows). However, the finite-size effect induces addi-
tional wave vectors around each of them [see the dotted red and gray
arrows in (b) that correspond to the propagating and evanescent
diffracted waves, respectively].
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where Λ � 2π∕Lg . an represents the amplitude of the n-th har-
monic field component that can be easily obtained by either the
finite element method (FEM) or the rigorous coupled wave
analysis (RCWA).

Using the angular spectrum expansion [1], the magnetic
field of the transmitted light in z>0 can be written as

HI � ŷ
X∞
n�−∞

ane
j
�
nΛx�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20−�nΛ�2

p
z
�
; (2)

where k0 � 2π∕λ and λ is the wavelength of light in free space.
The Rayleigh anomaly occurs when Lg ≈ λ, resulting in [19]

HI � ŷ�a0ejk0z � 2a1 cos�k0x��; (3)

where we considered only the first-order diffraction. For the
simplicity of discussion, we also assumed that the grating struc-
ture (e.g., its permittivity distribution) is symmetric with re-
spect to the z axis, which makes a1 real.

Using Eq. (3), we can easily derive

S̃x � 2ja0a1j sin�k0x� sin�k0z � ∠a0a1�; (4)

S̃z � ja0j2 � 2ja0a1j cos�k0x� cos�k0z � ∠a0a1�; (5)

w̃� ja0j2� 2ja1j2� 2ja0a1jcos�k0x�cos�k0z�∠a0a1�; (6)

where S � �η0∕2��S̃x ; S̃z� and w � �μ0∕2�w̃ denote the
Poynting vector and energy density of the transmitted light,
respectively. η0 and μ0 are the impedance and permeability of
free space, and their quotient becomes the speed of light in free
space (c � η0∕μ0). The energy velocity of light can be obtained
by v � S∕w [20], resulting in

vz�x; z > 0� � c
�
1 −

2ja1j2
w̃

�
: (7)

It is well known that this velocity coincides with the group
velocity of light in free space [21–23]. Equation (7) shows that
the amount of velocity reduction is determined by how much
energy of the transmitted light is stored purely in the diffracted-
wave components.

One more phenomenon to note is the so-called optical vor-
tex [19,24–26]. Equations (4) and (5) show that the Poynting
vector becomes zero at the points whose coordinates satisfy

2 cos�k0x� cos�k0z � ∠a0a1� � −ja0j∕ja1j; (8)

sin�k0x� sin�k0z � ∠a0a1� � 0: (9)
Because optical power cannot flow through these points, optical
vortices appear as a kind of detour around them. They increase
the effective path length of the transmitted light and
effectively reduce its velocity in the longitudinal direction. It
is notable that such singular points and resultant vortices can
appear only when η � ja1j∕ja0j ≥ 0.5 [see Eq. (8)].

In Figs. 2(a) and 2(b), we plotted the longitudinal velocity
vz of the transmitted light at x � 0, taking different values of
η2. They show clearly that the larger η2 is, the slower the spatial
average of vz tends to be. Moreover, the vortex effect becomes
effective when η2 ≥ 0.25, resulting in negative vz [see Fig. 2(c)
for an exemplary distribution of Poynting vectors when such
vortices are formed through a metallic grating]. This can sig-
nificantly slow down the average group velocity of the trans-
mitted light. We note that the transverse velocity vx is zero
at x � m (λ∕2) [where m is an integer; see Eq. (4)]. This is
because the grating generates two counter-propagating lights
that can produce standing waves in the transverse direction.
These characteristics reveal that the Rayleigh anomaly can

be used to slow down light in free space. Ideally, the optical
field pattern of the transmitted light will repeat itself with
period of λ along the z direction, which indicates an infinitely
long effective range for slow light.

However, in actual applications, the grating size is always
finite, but to take this “finiteness” into account is quite trouble-
some. If we use RCWA methods, we always come to impose a
periodicity on the grating. FEM calculations can be useful but,
if the grating size is quite large (but finite), heavy computer
resources and high calculation times are required. There are
a few semi-analytical methods that basically treat the finite gra-
ting as an array of electromagnetic radiators or scatters [27,28].
However, they are somewhat too complicated and are not ad-
equate for gratings with more than ∼103 periods. Hereafter, we
will develop a simple way of dealing with finite gratings, and
investigate how their “finiteness” effects on the slowdown factor
and slow light effective range via the Rayleigh anomaly.

Let us look at Fig. 1(b) where we depicted a finite size gra-
ting with a length of LA. In this case, the magnetic field dis-
tribution at the exit plane will be no longer periodic. Therefore,
instead of Eq. (1), we have

HF �x; 0� � ŷ
1

2π

Z
T �kx�ejkxxdkx; (10)

where T �kx� is the Fourier transform (FT) of HF �x; 0� · ŷ.
Since we can presumeHF �x; 0� · ŷ � �HI �x; 0� · ŷ�rect�x∕LA�,

Fig. 2. (a) Longitudinal velocity (vz ) of the transmitted light at
x � 0. Since the grating is assumed to be infinite, vz becomes periodic
in the z direction. (b) Spatial average of vz (hvzi) over one wavelength
along the z direction. (c) Exemplary distribution of Poynting vectors,
exhibiting optical vortices.
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T �kx� can be calculated by the convolution of the FT of
HI �x; 0� · ŷ and that of rect�x∕LA�, i.e., LAsinc�LAkx∕2π�.
Using Eq. (1), we can write the FT of HI �x; 0� · ŷ as
2π

P
nanδ�kx − nΛ�, which entails

T �kx� � LA
X
n

an sinc
�
LA�kx − nk0�

2π

�
: (11)

To take only the first-order diffraction into account, we need to
consider just three terms of this summation corresponding to
n � −1 to 1. Then, we have

HF � ŷ
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2π

�
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Z
sinc

�
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2π

�
ejkxxej
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2
x

p
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Z
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2π

�
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p
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Z
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2π

�
ej�kx−k0�xej

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20−�kx−k0�2

p
zdkx

�
: (12)

We can further approximate Eq. (12) by changing each integral
into a summation over an integer n with the substitution of
kx � �nΔ�k0. Fortunately, we do not need to consider large
values of kx (or nΔ) because the sinc function becomes negli-
gible for them. Let us define nmax as the maximum value of n.
Then, the maximum argument of the sinc function becomes
nmaxΔNg where N g � LA∕Lg (the number of periods in the
finite grating). If we want to take into account up to M side
lobes of the sinc function, we can put nmaxΔN g � M . This
entails nmaxΔ � M∕N g < <1 since 3 or 4 is enough for M.
We can thus use

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k

2
x

p
� k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �nΔ�2

p
≈ k0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − �kx � k0�2
p

≈ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffi	2nΔ

p
.

After some algebra with these approximations,

HF � ŷ
�
a 00e

jk0z � 2
Xnmax

n�1

χ0n cos�nΔk0x�ejk0z

�2a 01 cos�k0x� � 2
Xnmax

n�−nmax
n≠0

χ1n cos��1 − nΔ�k0x�ej
ffiffiffiffiffiffi
2nΔ

p
k0z

�
;

(13)

where a 00�1� � �ΔNg�a0�1� and χ0�1�n � a 00�1�sinc�nΔNg�. Let
us compare Eq. (13) with Eq. (3). In the case of an infinite
grating, the transmitted light has only three wave vectors: (i)
k0�� �0; k0� � k0�0; 1��, (ii) k�1�� �k0; 0� � k0�1; 0��, and
(iii) k−1�� �−k0; 0� � k0�−1; 0��. However, the “finiteness”
of the grating brings forth additional wave vectors around each
of them as is schematically shown in Fig. 1(b): k�n�0 �
k0�nΔ; 1� and k�n�	1 � k0�	�1 − nΔ�; ffiffiffiffiffiffiffiffiffi

2nΔ
p �. We should

point out that half of k�n�	1(with n<0) corresponds to evanescent
diffracted waves.

Equation (13) results in

vz�x; z > 0� � c
�
1 −

2Θ
w̃

�
; (14)

where Θ � Θpr � Θev. Θpr and Θev are related to the amounts
of velocity reduction due to the propagating and evanescent
diffracted waves, respectively [see the fourth term of the right
side of Eq. (13)], and are given by

Θpr � ja 01j2 �
X
n>0

jχ1nj2 � 2
X
n>0

ja 01χ1nj cos�nΔk0x�

× cos
	 ffiffiffiffiffiffiffiffiffi

2nΔ
p

k0z



�2
X
n>0

X
m>n

jχ1nχ1mj cos��m − n�Δk0x�

× cos
h	 ffiffiffiffiffiffiffiffiffi

2nΔ
p

−
ffiffiffiffiffiffiffiffiffiffi
2mΔ

p 

k0z

i
; (15)

Θev �
X
n<0

jχ1nj2e−2
ffiffiffiffiffiffiffiffi
2jnjΔ

p
k0z �2

X
n<0

ja 01χ1nje−
ffiffiffiffiffiffiffiffi
2jnjΔ

p
k0z

× cos�nΔk0x��2
X
n<0

X
m>n
m≠0

jχ1nχ1mje−
� ffiffiffiffiffiffiffiffi

2jnjΔ
p

�Im
� ffiffiffiffiffiffiffi

2mΔ
p ��

k0z

× cos��m−n�Δk0x�cos�
ffiffiffiffiffiffiffiffiffiffi
2mΔ

p
k0z�: (16)

The above results show that for our analysis of a finite grating,
just the values of a0 and a1 that the finite grating would have if
its size becomes infinite are required into further details of the
grating structure are necessary. This is an advantage in that
these results can be applied to a wide range of gratings.

Now, let us observe the finite-size effect numerically. In
Figs. 3(a) and 3(b), we compared the longitudinal velocities
of the transmitted light through finite gratings of different
lengths. We set x � 0 and assumed the same grating structure
so that a0, a1, and η remain the same in all cases (η2 � 1). The
results show that a smallerNg makes the vortex effect vanish after
some propagation distance [see Fig. 3(a)], as a result of which
the spatial average of vz increases as the transmitted light prop-
agates farther from the grating [see Fig. 3(b)]. To examine this
further, we calculated vz�0; z� with Θ � Θpr (neglecting Θev)
and vice versa, and plotted the results in Fig. 3(c) [when
Ng � 103]. The figure clearly demonstrates that such waning of

Fig. 3. Finite-size effect of the grating on (a) vz and (b) hvzi at
x � 0. Solid, dashed, dotted, and dashed-dotted lines in (a) and
circles, squares, diamonds, and triangles in (b) correspond to
Ng � 105, 104, 103, and 102, respectively. (c) Values of vz�0; z� with
Θ � Θpr (thin solid) and Θ � Θev (thick solid) when Ng � 103. The
dotted line corresponds to Θ � Θpr � Θev shown in (a).
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the “slowdown” feature via the Rayleigh anomaly results mostly
from Θev or the contribution of evanescent diffracted waves.

In contrast to the infinite grating case, the grating geometry
is not symmetric with respect to the translation in the x direc-
tion. This makes vx not vanish, even at x � m�λ∕2� [except for
m � 0]. We thus showed the logarithmic values of jvj, i.e., the
speed of the transmitted light in Fig. 4. The results exhibit that
the “slowdown” characteristics via the Rayleigh anomaly can be
implemented at not only on-axis, but also off-axis points. In
Fig. 5, we further plotted the spatial average values of jvj at x �
0.2Ng and 0.4N g , comparing with those at the on-axis points.
It is quite evident from the figures that the variations in the
speed of light (along both the x and z directions) become more
noticeable when the grating size gets shorter. In many practical

applications, it is very important to reduce the device size. Our
analytical approach can be very useful from this point of view in
that it can determine how far we can reduce the grating size
while retaining the required characteristics.

In summary, we have developed a general analytical ap-
proach to investigate the slow light effect of the Rayleigh
anomaly on diffraction gratings with both infinite and finite
sizes. Our study shows that the Rayleigh anomaly can slow
down the group velocities of the transmitted light over a very
long effective range, but the effect will diminish as the size of
the grating shrinks. This phenomenon suggests a new mecha-
nism to improve the light matter interaction that can enhance
long-range optical sensing and photodetection.
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Fig. 4. Finite-size effect of the grating on the speed of the transmit-
ted light, jvj�x; z�. (a)–(d) correspond to the cases of Ng � 105, 104,
103, and 102, respectively. Note that we have plotted the logarithmic
values of the speed, i.e., log10�jvj∕c�, setting its minimum to be −2.

Fig. 5. Spatial average of the speed (jvj) of the transmitted light
when Ng is (a) 105, (b) 104, and (c) 103. Solid, dashed, and dotted
lines in each figure correspond to jvj�0; z�, jvj�0.2Ng; z�, and
jvj�0.4Ng ; z�, respectively.
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