LETTER

Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

To cite this article: Xinyuan Chong et al 2017 Nanotechnology 28 26LT01

View the article online for updates and enhancements.

Related content
- Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering
 Manohar Chirumamilla, Anisha Gopalakrishnan, Andrea Toma et al.
- Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks
 Lars Heinke
- Roadmap on biosensing and photonics with advanced nano-optical methods
 Enzo Di Fabrizio, Sebastian Schlücker, Jérôme Wenger et al.

Recent citations
- Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence
 Xuemin Zhang et al
Letter

Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

Xinyuan Chong\(^1\), Ki-joong Kim\(^{2,3,4}\), Yujing Zhang\(^2\), Erwen Li\(^1\), Paul R Ohodnicki\(^{3,5}\), Chih-Hung Chang\(^2\) and Alan X Wang\(^1\)

\(^1\) School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, United States of America
\(^2\) School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States of America
\(^3\) National Energy Technology Laboratory (NETL), US Department of Energy, 626 Cochrans Mill Road, Pittsburgh, PA 15236, United States of America
\(^4\) AECOM, 626 Cochrans Mill Road, Pittsburgh, PA 15236, United States of America
\(^5\) Materials Science and Engineering, Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America

E-mail: wang@eecs.oregonstate.edu

Received 14 March 2017, revised 8 May 2017
Accepted for publication 19 May 2017
Published 6 June 2017

Abstract

In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO\(_2\)) with high capacity. Experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. The demonstration of infrared absorption spectroscopy of CO\(_2\) using the hybrid plasmonic–MOF device proves a promising strategy for future on-chip gas sensing with ultra-compact size.

Keywords: plasmonics, gas sensing, metal–organic framework, infrared absorption

(Some figures may appear in colour only in the online journal)

Introduction

Metal–organic frameworks (MOFs), a new class of nanoporous materials, have attracted intensive research interests due to their large surface area and wide structure tunability. MOFs are extended crystalline structures consisting of metal ions connected by organic ligands, which can essentially possess an infinite number of possible combinations with different physical and chemical properties. Therefore, MOFs have been widely applied in chemical separation [1], gas storage [2–5], drug delivery [6], sensing [7–10], and catalysis [11–14] applications. In recent years, hybrid plasmonic–MOF nanostructures have been reported to take the advantages of the strong gas adsorption capabilities of MOF materials and the optical field enhancement of plasmonics effect. These hybrid nanostructures have been applied in different applications, such as catalysis [15–18], imaging [19], surface-enhanced Raman scattering [20–27] and surface-enhanced infrared absorption [9]. However, most of these reported hybrid plasmonic–MOF nanostructures are based on chemically synthesized metallic or semiconductor nanoparticles, which have several drawbacks. First, the optical field enhancement of plasmonic nanoparticles (NPs) comes from the intrinsic plasmonic resonance of free electrons, which has
strong optical scattering and relatively low quality-factors (Q-factors) of only about 4–5. Considering a large amount of randomly distributed plasmonic NPs, the optical transmission through the thin film is relatively low. Second, the enhanced optical field from intrinsic plasmonics effect of NPs are highly localized, mostly confined at the surface or between the NPs. This means that the hot spot volume is very limited. Only the analyte molecules within the hot spot can interact with the highly localized optical field. For example, in our previous work [9], the volume ratio of the hot spots in the hybrid indium tin oxide NPs with Cu–BTC (BTC = benzene-1, 3, 5-tricarboxylate) MOF to enhance gas absorption is only 0.12\% based on our numerical calculation. Therefore, the overall plasmonic field enhancement is only about 2.6 times from our numerical calculation. Last, the intrinsic plasmonic resonance of chemically synthesized NPs is affected by free electron concentration, composition, size, geometry, and even the coupling between the NPs, which is difficult to control. Many experimentally results actually show much broader plasmonic resonances than simulation due to the inherent limitations and variation of fabrication process.

In this paper, we present a nanophotonic device consisting of a periodic plasmonic nanopatch array (NPA) [28] with integrated MOF layer to resolve the engineering challenges. Compared with randomly distributed plasmonic NPs relying on the intrinsic plasmonics effect [9] or triangular dipole nano-antennas with MOF [29], our design offers much higher Q-factors with higher optical transmission efficiency due to the constructive interaction of the surface plasmon polaritons at the interface between a gold (Au)-NPA and MOF thin film [30]. The optical field at the surface of the plasmonic NPA extends to the entire MOF layer, which can effectively increase the strength of light–matter interaction. In other words, more analyte molecules can be adsorbed and concentrated inside the MOF film and interact with the plasmonic field, which is crucial for enhanced infrared absorption. Moreover, the plasmonic resonance can be fine-tuned by the periodicity of the NPA, which can be precisely controlled by top-down lithography process. The large and precision tunability of plasmonic resonances offers the possibility to enhance the vibrational spectra sensing of various analytes and even for multiplexed sensing with high throughput.

The device consists of a Au-NPA on a sapphire ($n_{\text{sapphire}} = 1.721$) substrate, which is covered by a thin layer of MOF ($n_{\text{MOF}} = 1.326$), zeolitic imidazolate frameworks (ZIFs) or ZIF-8, as shown in figure 1. Light is launched from the MOF side, and the transmitted light is collected from the substrate. When the light is coupled into the device normal to the surface, surface plasmon resonances are excited at the Au/MOF interface and coupled with the Fabry–Pérot modes in the MOF layer as well. Since the Au-NPA is symmetric, the device is polarization independent. Based on the design, the parameters that can be modified are the periodicity (P) of the Au-NPA, gap width (G) between Au-NPs, the thickness (H) of the MOF layer and the Au thickness (T). In order to achieve high optical field enhancement within the MOF layer, optimization is performed by the DiffRACTMOD of Rssoft photonic component design suite, which is based on rigorous coupled-wave analysis [31]. Among these parameters, the MOF thickness (H) is the most important one. The optical effect of the parameters is well-studied in the literature for plasmonic nano-antennas [32]. The periodicity (P) of the Au-NPA determines the peak wavelength; the gap (G) affects the transmission intensity and also the spectrum width; the Au thickness (T) also has an influence on the transmission intensity. In this paper, we focused on the detailed study of the MOF thickness (H) as it not only affects the optical field enhancement, but also determines the infrared absorption path.

A scanning of the MOF thickness (H) is performed by fixing other parameters. The transmission intensity results are shown in figure 2(a). The major peak (indicated by the white arrow) shows a red-shift when the MOF thickness (H) increases from 0.4 to 3.0 μm. For real applications, the transmission intensity should be high enough to obtain good signal-to-noise ratio. Thus, the three peaks in the simulated transmission spectrum for $H = 2.7 \mu$m shown in figure 2(b) with over 50% transmission efficiency provide excellent measurement condition. In order to verify whether the thickness (H) is appropriate, three different values are selected from the three regions represented by the white dash lines. The electric field distributions of the three values of thickness at peak at 2.7 μm after modifying the period are shown in figures 2(c)–(e). For $H = 0.5 \mu$m, it has the highest field intensity, but most of the enhanced field is in air instead of in the MOF layer, which is not preferred by gas sensing. For $H = 1.5$ and 2.7 μm, most of the field is confined in the MOF layer. If we only consider the plasmonic field, then $H = 1.5 \mu$m is better than $H = 2.7 \mu$m. However, we need to consider the amount of adsorbed gas by MOF in our design. In other words, a thinner MOF layer means less gas molecules
are adsorbed. Therefore, the relatively thicker MOF is more desirable to allow more gas molecules to interact with the optical field. Finally, after comprehensive consideration of the plasmonic effect, MOF’s adsorbing property, transmission intensity and also growth time for the MOF layer, the parameters are determined to be $P = 2.11 \mu m$, $G = 250 \text{ nm}$, $H = 2.7 \mu m$, and $T = 40 \text{ nm}$. The simulated transmission spectrum is shown in figure 2(e), which has three resonant peaks in the shorter wavelength range and one sharp edge at the longer wavelength. Peak A is the desired coupled mode with $\sim 60\%$ transmission efficiency with a relatively higher Q-factor of 27.44. The electric field distributions at peak A are shown in figure 2(e) (E_z, only, corresponding to the plasmonic resonance of the Au-NPA), figure 2(f) (E_x, only, corresponding to the F–P resonance in the MOF thin film) and figure 2(g) (total hybridized electric field). The maximum intensity enhancement is 7.31. Essentially, the coupled mode extends the highly localized plasmonic field to the entire MOF layer, resulting in an increase of the interaction between gas molecules inside the MOF and the optical field. Peak B and C are the higher modes of peak A, and the sharp edge D represents the Rayleigh anomaly at the substrate side [33].

Experiments and results

The device is fabricated by focused ion beam etching followed by monolithic growth of a MOF thin film. The selected MOF is the zeolitic imidazolate framework-8 (ZIF-8s), which has been extensively investigated due to its excellent thermal stability and selectivity toward CO2 [34]. Besides, due to the hydrophobic surface property, water molecules can only be adsorbed at the outer surface, while CO2 can diffuse into the inner pores. Besides, the hydrophobic surface makes ZIF-8 even more attractive for chemical sensing in environments where water vapors are pervasive [34]. The growth process is described here briefly. Before growing the ZIF-8 film, the substrate with Au-NPA is cleaned in piranha solution.
(H$_2$SO$_4$/H$_2$O$_2$, 70/30 v/v%) at 70 °C for 30 min. Then it is washed thoroughly by deionized water and dried under nitrogen flow. To grow ZIF-8 thin film, the cleaned Au-NPA sample is immersed in a freshly mixed methanolic solution of 2-methylimidazole and Zn(NO$_3$)$_2$ for 30 min at room temperature, followed by washing using methanol and drying under nitrogen flow. To obtain 2.7 μm MOF layer, this process is repeated for 32 cycles. The scanning electron microscope images of the fabricated Au-NPA before and after growing MOF are shown in figures 3(a) and (b), respectively. As we can see, the MOF layer fully covers the Au-NPA and the MOF forms a relative smooth thin film with surface roughness about 10 nm, which is measured by atomic force microscopy (AFM) as shown in figure 3(c). The refractive index of the MOF thin film coated on a silicon wafer was measured by ellipsometry as shown in figure 3(d).

In order to quantitatively determine the enhancement provided by the hybrid plasmonic–MOF device, a CO$_2$ sensing measurement was performed by a Fourier transform infrared spectrometer system shown in figure 4(a). The gas cell used in the system is home built with 4 mm light path length. One side of the gas cell is sealed by a sapphire window and the other side is sealed by the device. Different CO$_2$ concentrations are obtained by mixing with nitrogen (N$_2$) using two mass flow controllers. Figure 4(b) shows the transmission spectra of different CO$_2$ concentration. As a reference, the hybrid plasmonic–MOF device is replaced by bare sapphire window. As a comparison, the transmission spectra of the reference without any device are shown in figure 4(c). The spectra in the manuscript have already been excluded from the effect of the plasmonic structure itself. Before taking the spectra of with CO$_2$, we measured the spectra of the device purged by Ar as reference. Since Ar molecules have no IR absorption around 2.7 μm, the reference spectra only contain the IR spectra of plasmonic structure. Then, the measured spectra of the device with CO$_2$ were normalized to the reference spectra. Therefore, the spectra in the manuscript only account the IR absorption from CO$_2$. According to the Beer–Lambert law, the absorption coefficient α of the CO$_2$ inside the gas cell without the hybrid plasmonic–MOF device can be calculated using the following equation:

$$I_{out}/I_{in} = \exp(-\alpha \cdot L),$$

where L is the path length of the gas cell. For the gas cell with the hybrid plasmonic–MOF device, besides the CO$_2$ absorption
in the gas cell, there is extra IR absorption from CO₂ molecules adsorbed inside the MOF. Therefore, the total IR absorption can be expressed as:

\[
\frac{I_{\text{out}}}{I_{\text{in}}} = \exp(-\alpha' \cdot L - \alpha \cdot H),
\]

where \(\alpha'\) is the enhanced IR absorption coefficient of the CO₂ adsorbed inside MOF layer, which is larger than \(\alpha\). Since the IR absorption is only exponentially proportional to the product of absorption coefficient and optical path length, equation (2) can be rewritten as equation (3):

\[
\frac{I_{\text{out}}}{I_{\text{in}}} = \exp(-\alpha' \cdot L - \alpha \cdot L').
\]

In equation (3), \(L'\) is the equivalent optical path length provided by the plasmonic–MOF device, which has a physical length of \(H\). Therefore, the enhancement factor (EF) is defined as \(EF = L'/H\). The EF includes both the plasmonic field enhancement effect and also the gas concentrating effect from the MOF film. The calculated EF as a function of CO₂ is shown.

Figure 4. (a) Schematic of the experimental setup for gas sensing. Experimentally obtained transmission spectra of CO₂ for (b) Au-NPA coated with MOF at different CO₂ concentrations and (c) the reference. (d) Illustration of data analysis.
in figure 5 using the experimental data in figure 4, with the highest EF over 1100. The nonlinear trend is due to the nonlinear absorption behavior of MOF, which is possibly due the different adsorption mechanism at high and low CO₂ concentration as we discussed in [4]. At high concentration, most of the gas molecules are physically adsorbed inside the MOF pores, which are limited by the available space. While at low concentration CO₂, chemical bond adsorption becomes dominant [7, 8], which can provide a large gas concentration factor.

In summary, we present a hybrid plasmonic–MOF device by integrating plasmonic NPA with nano-porous ZIF-8 MOF thin film. Compared with plasmonic NPs-enhanced MOF film, this new type of rationally designed nanophotonic devices provide enhanced optical transmission, higher Q-factors, stronger light–matter interaction, and tunable plasmonic resonances to match the vibrational spectra of the analytes. In this work, the hybrid plasmonic NPA-MOF thin film device was integrated with a gas cell for CO₂ sensing at 2.7 μm wavelength. Based on Beer–Lambert law, the total EF was calculated according to the experimental results. The highest EF obtained is about 1100. This device can be applied for on-chip IR gas sensing, which can potentially reduce the absorption length of conventional gas cells by several orders of magnitude.

This technical effort was sponsored by the National Science Foundation under Grant No. 1449383. Xinyuan Chong and Yujing Zhang were partially supported by the Graduate Student Fellowship from the National Energy Technology Laboratory (NETL).

References

[3] Tyliszakis E, Klontzas E and Froudakis G E 2009 The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties Nanotechnology 20 204030

Sugikawa K, Furukawa Y and Sada K 2011 SERS-active metal-organic frameworks embedding gold nanorods Chem. Mater. 23 3132–4

Kreno L E, Hupp J T and Van Duyne R P 2010 Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing Anal. Chem. 82 8042–6

