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A B S T R A C T

Quantitative analysis using thin-layer chromatography coupled in tandem with surface-enhanced Raman scat-
tering (TLC-SERS) still remains a grand challenge due to many uncontrollable variations during the TLC de-
veloping process and the random nature of the SERS substrates. Traditional chemometric methods solve this
problem by sampling multiple SERS spectra in the sensing spot and then conducting statistical analysis of the
SERS signals to mitigate the variation of quantitative analysis, while still ignoring the spatial distribution of the
target species and the correlation among the multiple sampling points. In this paper, we proposed for the first
time a parallel feature extraction and fusion method based on quaternion signal processing techniques, which
can enable quantitative analysis using recently established TLC-SERS techniques. By marking three deterministic
sampling points, we recorded spatially correlated SERS spectra to constitute an integral representation model of
triple-spectra by a pure quaternion matrix. Quaternion principal component analysis (QPCA) was utilized for
features extraction and followed by feature crossing among the quaternion principal components to obtain final
fusion spectral feature vectors. Support vector regression (SVR) was then used to establish the quantitative
model of melamine-contaminated milk samples with seven concentrations (1 ppm–250 ppm). Compared with
traditional TLC-SERS analysis methods, QPCA method significantly improved the accuracy of quantification by
reaching only 7% and 2% quantization errors at 20 and 105 ppm concentration. Validation testing based on
reasonable amount of statistic measurement results showed consistently smaller measurement errors and var-
iance, which proved the effectiveness of QPCA method for TLC-SERS based quantitative sensing applications.

1. Introduction

Thin layer chromatography combined with surface-enhanced
Raman spectroscopy (TLC-SERS) has become a very effective technique
for detecting target molecules from a mixture or a complex sample with
exclusive advantages of simplicity, high throughput, and cost effec-
tiveness [1]. Briefly, a mixture sample is spotted onto a commercial
silica-gel TLC plate (stationary phase) or a specially designed porous
substrate. The eluent (mobile phase) migrates through the TLC plate via
capillary flow. Different molecules carried by the eluent flow will be
separated due to different affinities toward the stationary and mobile
phases. After TLC separation, gold or silver colloidal nanoparticles are
casted or sprayed onto the concentrated spots and then SERS spectra
will be collected by a Raman microscope or a Portable Raman spec-
trometer. In the past years, many TLC-SERS chemical sensing results

have been reported including detecting artist dyes in fibers [2], sub-
stituted aromatic pollutants in water [3], apomorphine in human
plasma [4], tobacco-related biomarkers and cocaine in urine [5,6],
organophosphate pesticide in tea leaves [7], adulterants in botanical
dietary supplements [8,9], pericarpium papaver in hot pot [10], afla-
toxins in peanuts [11], Sudan-I in cooking oil [12], and chemical re-
action [13].

Despite these enormous progress, accurate quantitative analysis
using TLC-SERS technique is still a grand challenge due to two intrinsic
natures associated with the TLC-SERS processes. First, the distribution
of target molecules within each analyte concentration spot is non-uni-
form and can be disturbed by many uncontrollable factors such as the
inhomogeneous porosity of the TLC plate, temperature and airflow
fluctuation during the TLC process, and even the dispensing of the
plasmonic colloids. Second, the measured SERS spectra from the
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deposited plasmonic nanoparticles are naturally random due to the hot
spot strength variation, non-uniform adsorption of the molecules, and
random scattering of the SERS signals from the porous TLC plate [14].
The porous TLC plate is also detrimental to high sensitivity analysis
because only a portion of separated target molecules can be adsorbed
by the plasmonic nanoparticles at the top surface of the TLC plate,
which will contribute to the measurable SERS signals. To minimize the
impact of the porous TLC plate, some researchers transferred the se-
parated analyte onto a uniform SERS substrate by dissolving it with a
suitable solvent [15]. Another group used thin layers of metal nano-
particles as both the TLC layer and the SERS substrate [16,17]. How-
ever, the transfer of the analyte spot from the TLC layer requires extra
efforts and the usage of the metallic TLC plates could comprise the
separation capability of the TLC plate. In addition to the optimization of
TLC plates and SERS substrates, an internal reference method was also
adopted to reduce the fluctuations of SERS signals [18]. Nevertheless, it
still relies on single point spectrum to obtain the semi-quantitative
model. Other groups proposed quantitative analysis based on digital
images of the analyte spots in the TLC plate [19,20]. Although with
potential to calibrate the TLC plate variation in theory, as an indirect
measurement method, it cannot measure the spectra of target molecules
and lack specificity of SERS sensing. In summary, existing quantitative
TLC-SERS analysis methods are exclusively based single-point sampling
or random multiple-point sampling. In reality, after the TLC separation,
the diameter of the analyte concentration spot is usually much larger
than that of the laser beam, which will result in spatial distribution of
the SERS spectra. Ignoring the correlation between the SERS spectra
and the spatial distribution of the analyte will lead to poor reproduci-
bility and inaccurate quantitative analysis.

The quaternion is a member of noncommutative division algebra
which was invented by William Rowan Hamilton [21]. Many qua-
ternion-based algorithms have been proposed in the field of signal
processing, including quaternion Fourier transform [22], quaternion
singular value decomposition [23], quaternion principal component
analysis [24,25], quaternion independent component analysis [26,27],
quaternion singular spectrum analysis [28], and quaternion principal
component analysis network [29]. These proposed algorithms have
been widely applied in computer graphics [30], aerospace applications
[31], image processing [32], pattern recognition [33,34], vector sensor
signal processing [35], blind extraction [36], adaptive filtering [37],
biomedical signals analysis [38], and hyperspectral imaging [39]. In
this work, we introduce a quaternion-based parallel feature extraction
method for multi-spectral processing of TLC-SERS analysis, which sig-
nificantly improved the accuracy of quantitative analysis. As shown in
Scheme 1, we prepared melamine contaminated milk samples with the
concentrations ranging from 1 to 250 ppm and performed TLC separa-
tion. After that, we recorded the SERS spectra at the top edge, the
center and the bottom edge positions inside the analyte spot using a
portable Raman spectrometer. Next, a parallel representation model of
the triple-spectral data was constructed using a pure quaternion matrix.
Quaternion principal component analysis (QPCA) was utilized for fea-
ture extraction and followed by feature crossing [40] between the
quaternion principal components to obtain final fusion of spectral fea-
ture vectors. Finally, a quantitative model was built using support
vector regression (SVR) algorithm.

2. Materials and methods

2.1. Synthesis of gold nanoparticles

The gold nanoparticles (Au NPs) were synthesized by sodium citrate
as the reducing and stabilizing agent developed by Grabar, K. C. [41].
Briefly, a total of 100mL 1mM chloroauric acid aqueous solution was
heated to the boiling point under vigorous stirring. After adding 4.2 mL
of 1% sodium citrate, the pale yellow solution turned fuchsia quickly.
The colloids were kept under reflux for another 20min to ensure

complete reduction of Au ions. After cooling to room temperature, the
colloids were centrifuged at 9000 rpm for 15min. The UV–vis absorp-
tion spectra and the SEM image of the prepared Au NPs were shown in
Figs. S1 and S2 respectively. From the UV–vis spectroscopy measure-
ment, the localized surface plasmonic resonance peak is at 528 nm with
a relatively narrow spectral width, which indicates their diameters of
approximately 40 nm. According to the basis of the Lambert’s law, the
concentration of Au NPs was calculated to be 4×10−10 M with a molar
extinction coefficient of 3.4× 1010M−1 cm−1.

2.2. Samples preparation

Melamine solution with concentration of 500 ppm was prepared by
dissolving the melamine powder in methanol and lower concentration
solution was prepared via stepwise diluting with methanol. Fresh whole
milk was purchased from local supermarket. Melamine-spiked milk
samples were prepared by adding equal amounts (5 ml) of melamine
solution and milk under vigorous stirring at room temperature to obtain
homogeneous solutions with the final melamine concentration of 250,
100, 25, 10, 5, 2 and 1 ppm.

2.3. TLC-SERS experiment

TLC-SERS was performed in the following three steps. First, 2 μL
sample solution was spotted by a micro-pipette at 12mm from the edge
of the TLC plate, which is Silica-Gel 60 from Merck Inc. The TLC plates
used herein has very low fluorescence background under 380 nm UV
light illumination. Drying naturally in the air, the plate was kept in a
TLC development chamber and eluted by Acetone: Chloroform:
Ammonia (7:0.5:2) mobile phase for 15min. After the eluent on the
TLC plate evaporated naturally, 2 μL Au NPs were drop casted onto the
analyte spot, which is determined according to previously measured
retention factor (Rf) as discussed in Section 3.1. Finally, a portable
Raman spectrometer equipped with a diode laser emitting at 785 nm
wavelength for illumination over a 100 μm diameter was used to obtain
the SERS signals. Due to the low photon energy at 785 nm wavelength,
the Raman laser minimizes the excitation of fluorescence background,
which yields very clear SERS spectra. The laser power, the scanning
range, the optical resolution, and the integration time were set as
30mW, 400–1800 cm−1, 2 cm−1 and 5000ms respectively. After TLC
separation, the diameter of the analyte spot is about 3mm. In order to
collect three SERS spectra within each analyte spot, we conducted se-
quential SERS measurement at the center of the analyte spot and±
1.35mm along the mobile phase direction using a positioning stage,
which is the accessory of the i-Raman Plus Portable Fiber Optic Raman
System. Each SERS measurement was repeated three times.

2.4. Multispectral quaternion parallel representation model

The quaternion toolbox for MATLAB is used in the TLC-SERS spectra
analysis [42]. In order to process the spectral data of the three positions
inside the analyte spot range simultaneously and maintain the corre-
lation among them, we proposed a parallel triple-spectra representation
model based on quaternion valued signals. The basic idea is utilizing
the multi-dimensional quaternion domain and treat the triple-spectra as
a single hyper-complex number. More introduction about the qua-
ternion model are included in the S1 of algorithm explanation in the
supporting information.

Here we encoded three SERS spectra intensity values at a specific
wave number into a pure quaternion:

= ∙ + ∙ + ∙q w I w p i I w p j I w p k( ) ( , 1) ( , 2) ( , 3)i i i i (1)

Where, q w( )i represents the triple-spectra as a complex number. Each
spectral intensity I w p I w p( , 1), ( , 2) and I w p( , 3) at three separated
sequential measurement positions p R bottom p R center1( ), 2( )f f and
p R top3( )f at the specific wavelength value wi corresponds to the three
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imaginary parts of the pure quaternion respectively.
In case of one sample, spectra of three measurement points

throughout the entire wavelength range can be described as a pure
quaternion vector as follows:

= ⋯ ⋯Q q q q[ , , , ]t w w wi M1 (2)

Where, wi is the wavelength range of the SERS spectra, t= 1,2,⋯,N is
the number of samples.

Considering a set of N samples of a specific concentration in the
TLC-SERS experiment, all spectral data can be constructed as a qua-
ternionic spectra matrix:
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Where, ∈ ×Q N M� , is a matrix with the size of ×N M in which each
element is a pure quaternion, M is the number of the wavelength.

Based on this quaternion multi-spectral model, we can analyze TLC-
SERS spectral data using quaternion signal processing techniques over
the quaternion domain�. At the same time, this model can preserve
correlation among the triple-points of the TLC process with the ad-
vantage of quaternion domain for representing three dimensional sig-
nals in a natural way.

3. Results and discussion

3.1. TLC-SERS spectra of melamine in real milk samples

After separation of melamine-spiked milk samples with seven dif-
ferent concentrations, the melamine spot was visualized by iodine
colorimetry and the range of the Rf was measured to be 0.57–0.63 and
shown in Fig. 1(b). Since the Rf values are quite deterministic, it does
not require further iodine colorimetry for real sample measurement. We
record the SERS spectra at the top edge, center and bottom edge within
the spot range respectively. For the spiked milk sample with the mel-
amine concentration of 250 ppm, the triple-points SERS spectra inside
the analyte spot were shown in Fig. 1(a). The Raman peak at
709.8 cm−1 of melamine could be clearly seen in the SERS spectra.

Triple-points TLC-SERS spectra of other concentrations could be found
in Fig. S3 of the Supporting Information.

3.2. QPCA feature extraction and feature cross

To the quaternion spectra matrix, QPCA was first conducted. More
introduction about QPCA could be found in the S2. After quaternion
principal component decomposition of raw quaternion spectral matrix,
we obtain the first three quaternion principal component features
QPC QPC,1 2 and QPC3, which are quaternion forms as follows:

= + ∙ + ∙ + ∙ =QPC P P i P j P k i( 1,2, 3)i i i i i1 2 3 4 (4)

After normalization of the quaternion principal components and
transformation from quaternion to Euler angle, we can visualize them
onto the surface of a unit sphere, which were shown in Fig. 2. The
details about the visualization method are included in the S2 of algo-
rithm explanation in the supporting information.

From Fig. 2, it is still difficult to distinguish different concentrations
based on single quaternion principal component feature. Therefore, we
performed feature cross and fusion operation with the first three qua-
ternion principal components. QPC QPC,1 2, and QPC3. The operator that
obtains the scalar part of a quaternion is abbreviated as 〈∙〉R and that
obtain the three imaginary parts of a quaternion is abbreviated as 〈∙〉I .
Then the first-order feature vector was constructed with three fusion
modes, which extracted the real parts, imaginary parts and both parts of
each quaternion principal component respectively.

= 〈 〉 〈 〉 〈 〉 ∈Fea QPC QPC QPC R[ , , ]ord
R R R1

1
1 2 3

3 (5)

= 〈 〉 〈 〉 〈 〉 ∈Fea QPC QPC QPC R[ , , ]ord
I I I2

1
1 2 3

3 (6)

= 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉

∈

Fea QPC QPC QPC QPC QPC QPC

R

[ , , , , , ]ord
R I R I R I3

1
1 1 2 2 3 3

6 (7)

First, the second-order feature vector was constructed with feature
cross operation. A feature cross is a synthetic feature formed by mul-
tiplying two or more features. In this paper we multiply two different
quaternion principal components extracted from first three quaternion
principal components in rotation. Then we got the real and imaginary
part using the operators defined by 〈∙〉R and 〈∙〉I operators for each
synthetic crossing feature to get the final feature vector. This procedure
was illustrated as follows:

Scheme 1. TLC-SERS sensing of melamine-contaminated milk and quantitative analysis based on QPCA and feature crossing combined with SVR algorithm.
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= ∙ ∈FeaCross QPC QPC1 1 2 � (8)

= ∙ ∈FeaCross QPC QPC2 1 3 � (9)

= ∙ ∈FeaCross QPC QPC3 2 3 � (10)

= 〈 〉 〈 〉 〈 〉 ∈Fea FeaCross FeaCross FeaCross R[ , , ]ord
R R R1

2
1 2 3

3 (11)

= 〈 〉 〈 〉 〈 〉 ∈Fea FeaCross FeaCross FeaCross R[ , , ]ord
I I I2

2
1 2 3

3 (12)

= 〈 〉 〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 ∈

Fea

FeaCross FeaCross FeaCross FeaCross

FeaCross FeaCross R

[ , , ,

, , ]

ord

R I R I

R I

3
2

1 1 2 2

3 3
6 (13)

We performed quantitative regression analysis using SVR with the
aforementioned three feature-fusion modes respectively and obtained
the quantitative analysis results that were shown in the Table1.

From Table1, we can conclude that the best regression performance
can be obtained based on second-order synthetic features because cross
features actually can represent the synergy of the respective informa-
tion of a single quaternion principal component, which can provide
better nonlinear expression abilities beyond which a single feature can
achieve individually. The principal component with the real-part fea-
tures of the first-order and second-order cross features were plotted
respectively in the Fig. 3(a) and (b). From Fig. 3, it is obvious that the

seven groups of spectra with different concentrations can be separated
very clearly. At the same time, the similar regression effect was ob-
tained based on feature vectors combined with the first-order and
second-order real-part features, which integrated the whole feature
information of raw spectra dataset.

Fig. 1. (a) TLC-SERS spectra of melamine spiked milk (250 ppm) at different measurement positions (b)TLC plate shown the measurement positions Rf bottom, center
and top, respectively.

Fig. 2. Visualization of quaternion principal components on a unit sphere surface. (a), (b), (c) are the first, second and third quaternion principal component,
respectively.

Table 1
Quantitative analysis results with different feature-cross and fusion methods.

Feature cross and fusion Training Set Testing Set

RMSECV R2 RMSEP R2 RPD

Fea ord
1
1 3.1095 0.99921 8.0089 0.99004 12.842

Fea ord
2
1 34.306 0.81121 42.047 0.75264 2.0166

Fea ord
3
1 2.8646 0.9986 9.9674 0.98587 9.0359

Fea ord
1
2 0.72778 0.99994 3.9749 0.99762 24.246

Fea ord
2
2 30.986 0.87595 31.041 0.86554 2.4774

Fea ord
3
2 5.3651 0.99619 9.9660 0.98527 9.2044

Fea Fea[ , ]ord ord
1
1

1
2 0.19785 0.99988 4.1864 0.99722 23.792

Fea Fea[ , ]ord ord
2
1

2
2 28.903 0.8744 31.969 0.85347 2.6343

Fea Fea[ , ]ord ord
3
1

3
2 4.4452 0.99775 10.168 0.98549 8.4949
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3.3. Multivariate Regression using support vector regression

We employed SVR method to obtain the regression prediction model
for the melamine contaminated milk samples. As the nonlinear char-
acteristics originated from the complex procedure of the TLC develop-
ment and the variation of the SERS spectra, nonlinear regression

method is suitable for TLC-SERS quantitative modeling. RBF kernel was
chosen in constructing the SVR model. The grid searching method was
conducted to determine the optimal values of two key parameters (γ for
the RBF kernel and C for the SVM) in the searching range [2−10–210].
The parameters pair with the best cross-validation accuracy is de-
termined to be (12.1257, 1024). Based on the optimal parameters, the
calibration curves for the actual concentrations and predicted con-
centrations with the training and testing data set were shown in
Fig. 4(a) and (b) with the zoomed-in view plots of calibration curves in
the low concentration range (1 ppm to 10 ppm). The mean and variance
of the prediction results were shown in Table S1 of the Supporting In-
formation. It can be seen that the predicted concentrations were very
close to the actual concentrations for each sample for the entire con-
centration range of 1–250 ppm.

In order to prove the superiority of the proposed algorithm, we
compared the results with those obtained by six commonly used che-
mometric methods based on three independent point spectral data. The
first three comparison methods (Channel 1–3) utilized the SERS spectra
from three uncorrelated measurement points. The Series Channels
method concatenated the principal components of the three previous
channels into a single long serial feature vector. The Summation
Channels and Average Channels used the cumulative and average value
of the three SERS spectra to obtain principal components respectively.

Fig. 3. Quaternion principal components scatter plot of the real-part features (a) the first-order quaternion principal components and (b) the second-order quaternion
principal components.

Fig. 4. Quantitative fitting of actual concentrations and predicted concentrations of melamine in milk using quaternion-based feature extraction combined with SVR
model: (a) training dataset; and (b) testing dataset.

Table 2
Comparison between the serial processing method based on single channel
spectrum and proposed parallel processing method based on quaternion feature
extraction.

Process Method Optimal PCs Training Set Testing Set

RMSECV R2 RMSEP R2 RPD

Channel1 4 7.3014 0.99108 10.113 0.98498 9.2667
Channel2 3 5.9936 0.98757 12.684 0.97603 7.3982
Channel3 12 12.039 0.98474 31.932 0.85404 2.5856
Serial Channels 19 0.15123 0.99997 9.6414 0.98656 10.033
Sum Channels 3 27.599 0.87375 31.905 0.85651 2.4111
Average

Channels
10 5.1767 0.99426 11.866 0.98057 7.3578

Quaternion
Channels

3 0.1955 0.99999 3.8131 0.9974 29.271
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Nevertheless, all these methods ignored the correlation of the SERS
spectra and the spatial distribution. The comparison between the six
aforementioned methods with the quaternion-based method was shown
in Table2. Each comparison method was based on its respective optimal
parameters and the relationship between regression performance and
number of principal components was listed in Fig. S4 of the Supporting
Information.

From analysis based on single-point measurement
(Channel1–Channel3), we can see large variations of the quantitative
fitting associated with the random nature of TLC-SERS sensing me-
chanism, which can constraint quantitative sensing for practical ap-
plications. The analysis based on statistical analysis, however, shows
mixing outcome. Sum Channels using feature vector extracted from
cumulative spectra led to even worse quantification. In contrast, the
reliability and robustness will be better based on Average Channels and
Serial Channels feature. Obviously, the quaternion-based parallel pro-
cessing method can greatly improve the regression than the other six
methods. The main reason is that the spatial distribution information of
the TLC development was inherently encoded in the quaternionic re-
presentation model of multispectral data. The spectral data of three
SERS sensing positions are treated jointly as a whole with their intra-
correlations being fully taken into account. The quaternion feature
extraction of multispectral data without losing the information between
different detecting positions and the synthesized features obtained by
feature crossing accurately reflect the nonlinear relationship embedded
in multi-points spectral features of TLC development.

3.4. Validation with real samples

In order to verify the generalization ability of the model based on
quaternion parallel feature extraction, 20 ppm and 105 ppm melamine-
contaminated samples were prepared for blind testing. Without
knowing the real melamine concentration, the second author Ailing Tan
performed the TLC-SERS measurement according to the same proce-
dure described in Section 2.3. Each sample were measured 15 times by
TLC-SERS to evaluate the accuracy possibility. Next, the first author

Yong Zhao processed the spectral data according to the methods de-
scribed in this paper. Briefly, the quaternion representation spectral
data is projected to the quaternion principal component projection
matrix, and the quaternion principal component features were ob-
tained. Then the features were crossed to obtain the fusion feature and
the feature vector was used as input to the established SVR regression
model. For each concentration group, 3 spectral data were selected
randomly from the 15 spectra of each sample to predict the quantifi-
cation results, effectively presenting 455 possible validation tests. The
predicted mean values and standard variance values of the Quaternion
Channels proposed in this paper and the comparative prediction results
with the other methods were shown in Table 3. The measurement error
between the mean value and the actual concentration is 7% for 20 ppm
sample and only 2% for 105 ppm sample. It is very obvious that Qua-
ternion Channels method achieved much more accurate mean values
and the variance values were much smaller as well compared with other
commonly used chemometric methods.

In order to show the statistic performance of the quantitative model
established by the proposed method, the scattering plots of 80 ran-
domly chosen predicted results were shown in Fig. 5(a) and (b) for 20
and 105 ppm, respectively. The horizontal axis is the standard deviation
and the vertical axis is the difference of the mean value to the actual
value of melamine concentration. As one can see from Fig. 5, all the
predicted results based on quaternion parallel processing method are
more closely distributed around the original point, representing better
accuracy and smaller variance. The validation results can prove that the
parallel quaternion principal component method is truly a powerful
tool for quantitative TLC-SERS sensing.

4. Conclusions

This paper proposed for the first time a quaternion-based parallel
feature extraction method that enables quantitative analysis using well-
established TLC-SERS techniques, which suffer poor quantification ac-
curacy. By collecting SERS spectral data from three deterministic points
at each measurement, the multi-spectra were holistically expressed as a

Table 3
Comparison of the validation results with mean and variance values.

Concentration Predicted results C1 C2 C3 Cserial Cmean Csum Cquaternion

20ppm Mean 18.9438 21.9972 39.0973 32.9074 34.1045 53.4921 21.4722
Variance 5.2052 2.5925 3.4751 2.5857 5.1529 12.8846 2.3112

105ppm Mean 93.0887 81.4893 93.4377 98.5279 81.6958 91.4590 101.8571
Variance 4.8163 1.4430 7.0837 2.5064 0.9033 4.7776 0.4964

Fig. 5. Scattering plot of the validation results based on the models established with different methods: (a) 20 ppm and (b) 105 ppm.
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pure quaternion matrix to preserve the spatial and coupling information
of the TLC-SERS data. Followed by quaternion principal component
feature extraction and feature cross, SVR regression method was uti-
lized to obtain quantitative analysis results of melamine-contaminated
milk with concentrations from 1 to 250 ppm. Compared with traditional
TLC-SERS chemometric analysis methods, QPCA method significantly
improved the accuracy of quantification in both the modeling test and
validation test. Our research proved the effectiveness of QPCA method
to enable TLC-SERS quantitative sensing, which will play critical roles
in food safety, environmental protection, drug detection, homeland
security, and forensics investigation.
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