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A B S T R A C T

Scombroid fish poisoning caused by histamine intoxication is one of the most prevalent allergies associated with
seafood consumption in the United States. Typical symptoms range from mild itching up to fatal cardiovascular
collapse seen in anaphylaxis. In this paper, we demonstrate rapid, sensitive, and quantitative detection of his-
tamine in both artificially spoiled tuna solution and real spoiled tuna samples using thin layer chromatography
in tandem with surface-enhanced Raman scattering (TLC-SERS) sensing methods, enabled by machine learning
analysis based on support vector regression (SVR) after feature extraction with principal component analysis
(PCA). The TLC plates used herein, which were made from commercial food-grade diatomaceous earth, served
simultaneously as the stationary phase to separate histamine from the blended tuna meat and as ultra-sensitive
SERS substrates to enhance the detection limit. Using a simple drop cast method to dispense gold colloidal
nanoparticles onto the diatomaceous earth plate, we were able to directly detect histamine concentration in
artificially spoiled tuna solution down to 10 ppm. Based on the TLC-SERS spectral data of real tuna samples
spoiled at room temperature for 0–48 h, we used the PCA-SVR quantitative model to achieve superior predictive
performance exceling traditional partial least squares regression (PLSR) method. This work proves that diato-
maceous earth based TLC-SERS technique combined with machine-learning analysis is a cost-effective, reliable,
and accurate approach for on-site detection and quantification of seafood allergen to enhance food safety.

1. Introduction

Histamine is a biogenic amine that can be produced in fish by
bacterial enzymatic decarboxylation of histidine. Histamine fish allergy
is one of the most prevalent illnesses associated with seafood con-
sumption in the U.S. constituting 38% of all seafood related food-borne
illnesses reported to the US Center for Disease Control (CDC, 2006). The
illness is frequently associated with eating fish containing high levels of
histamine with a variety of symptoms generally begin with tingling or
burning sensations in the mouth followed by the development of rash,
nausea, diarrhea, flushing, sweating and headache within a few minutes
to 2 h after eating the fish (Bulushi, Poole, Deeth, & Dykes, 2009; Feng,
Teuber, & Gershwin, 2016). Fresh fish usually contain negligible
amounts of histamine. However, tuna and other pelagic species, which
account for significant global fish production, contain large amounts of
free histidine in muscles and are more likely to produce histamine as a
result of bacterial enzymatic activity if the fish is not properly stored

before consumption (Tarliane, Priscila, Warlley, & Maria Beatriz,
2011). Histamine is colorless and odorless. A high histamine level can
exist in fish without noticeable changes in appearance or smell of the
fish. Therefore, the rapid and reliable detection of histamine in fish has
attracted significant research interest for the sake of public health and
safety concerns, as well as for the global fish business. The European
Union (EU) and the U.S. Food and Drug Administration (FDA) estab-
lished a guidance level that the average concentration of histamine in
fish for consumption must be lower than 100 ppm and 50 ppm re-
spectively (EC, 2005, pp. 1–25; FDA, 2011, pp. 113–152).

Conventional methods for histamine detection in tuna include high
performance liquid chromatography (HPLC) (Önal, Tekkeli, & Önal,
2013), enzyme-linked immunosorbent assay (ELISA) (Lupo & Mozola.
2011), liquid chromatography-mass spectrometry (LC-MS) (Ohtsubo,
Kurooka, Tada, & Manabe, 2014) and fluorimetric detection
(Muscarella, Lo Magro, Campaniello, Armentano, & Stacchini, 2013)
with very low detection limits. However, these methods often require
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very expensive instrumentation with time-consuming laborious sample
preparation procedures, which are performed by skilled personnel. In
addition, these methods can only be used in laboratories. Therefore,
there is a need to develop a sensitive, quantitative means for rapid
detection of histamine in real tuna samples for on-site inspection to
minimize the occurrence of histamine poisoning and enhance seafood
safety.

Surface-enhanced Raman spectroscopy (SERS) is one of the most
powerful and ultra-sensitive analytical tools, which has been widely
applied to food security analysis and many other fields (Craig, Franca, &
Irudayaraj, 2013; Gukowsky, Xie, Gao, Qu, & He, 2018; Qi et al., 2013;
Zhang et al., 2015). For example, SERS has been reported to success-
fully determine artificial histamine-spiked fish samples with various
types substrates (Gao et al., 2015; Janči et al., 2017) Real-world food
samples, however, are complex matrices that generally contain large
molecules such as fat and proteins, which may exist strong signal in-
terference or even block the access of the target molecules to the me-
tallic nanoparticles (NPs) surface. Accordingly, some separation tech-
niques have been combined with SERS to address efficient separation,
such as liquid chromatography (LC) (Cowcher, Jarvis, & Goodacre,
2014) capillary electrochromatography (CE) (Karaballi, Nel, Krishnan,
Blackburn, & Brosseau, 2015), electrostatic separation (ES) (Li, Li,
Fossey, & Long, 2010), and thin layer chromatography (TLC) (Freye,
Crane, Kirchner, & Sepaniak, 2013; Radu et al., 2016; Zhu, Cao, Cao,
Chai, & Lu, 2014), Among these, SERS in tandem with TLC is the most
attractive method due to its exclusive advantages such as low cost,
simple pretreatment, high throughput, and capability for on-site de-
tection when using portable Raman spectrometers. So far, TLC-SERS
has been successfully applied to the separation and identification of
various analytes from complex ingredients, such as tobacco-related
biomarkers in urine samples (Huang, Han, & Li, 2013), aromatic pol-
lutants in water (Li et al., 2011), natural dyes on works of art (Brosseau
et al., 2009), apomorphine in human plasma (Lucotti et al., 2012),
ephedrine in dietary supplements (Lv et al., 2015) and so on (Zhang,
Liu, Liu, Sun, & Wei, 2014). Recently, Xie, Z. developed a histamine
screening method by using Ag NPs and NaCl to obtain SERS spectra of
fluram-derivatized histamine on TLC plates (Xie et al., 2017). Gao, F.
presented remarkable success in determination of Sudan I in paprika
powder using a molecularly imprinted polymers (MIP)–TLC–SERS bio-
sensor (Gao et al., 2015). Yu, W. employed inkjet-printed paper sub-
strates for TLC-SERS to detect melamine in food product (Yu & White,
2013). Nevertheless, in most TLC-SERS methods, the TLC plates are
commercially available plates such as silica gel or cellulose, which are
usually not SERS-active substrates. The sensitivity and resolution of
these reported TLC-SERS was limited. Another challenge is that the low
target concentration in complex samples and the multi-step treatment
in the TLC-SERS procedure will result in nonlinear relationship between
the spectral and the target concentration, which will induce difficulty in
quantitative analysis. To overcome this challenge, chemometrics
methods such as principal component analysis (PCA) and partial least
squares regression (PLSR) have been applied to the TLC-SERS spectral
analysis for qualification and quantification (Gao et al., 2015; Liu & Lu,
2017; Lv et al., 2015). However, there have been very few reports using
nonlinear multivariate calibration methods, which can account for
more measurement variations and provide better quantification accu-
racy.

Diatomaceous earth is a kind of natural photonic crystal biosilica
consisting of fossilized remains of diatoms, which are marine organisms
that possess skeletal shells of hydrated amorphous silica, called frus-
tules, with two dimensional periodic pores of hierarchical micro-and
nanoscale features (Losic, Mitchell, & Voelcker, 2009; Losic,
Rosengarten, Mitchell, & Voelcker, 2006). Diatoms have a variety of
eminent properties in optics, physics, and chemistry such as their
photonic-crystal nature and high surface-to-volume ratio (nearly
200m2/g). Hybrid diatom-plasmonic nanoparticle structures have been
proved to be excellent SERS substrates for ultra-high performance

biosensors (Kong et al., 2016, Kong, Li et al., 2017, Kong, Squire,
Chong, & Wang, 2017, Kong, Xi et al., 2017; Xu et al., 2013). In the
previous work of our group, we have demonstrated that diatomaceous
earth can function simultaneously as thin layer chromatography to se-
parate toxic molecules from complex food samples and as ultrasensitive
SERS substrates to probe the signature Raman peaks using a regular
Raman microscope (Kong, Chong, Squire, & Wang, 2018; Kong, Li et al.,
2017, Kong, Squire et al., 2017, Kong, Xi et al., 2017). Nowadays,
commercial portable Raman spectrometers have been widely available
at affordable cost and can achieve similar level of sensitivity compared
to regular benchtop Raman microscope, which makes TLC-SERS a
feasible method for on-site detection.

In this paper, we demonstrate a diatomaceous earth based TLC-SERS
sensing technique combined with machine learning analysis to quan-
titatively detect seafood allergen in real spoiled tuna samples. We
fabricate a diatomaceous earth TLC plate as a separable SERS-active
substrate to detect histamine in artificially spoiled tuna solution down
to 10 ppm by a BW&TEK portable Raman spectrometer. Support vector
machine is a multivariate calibration method based on statistical
learning theory and is very powerful in spectroscopy analysis applica-
tions owing to its nonlinear characteristics (Dong, Weng, Yang, & Liu,
2015; Wu et al., 2015). Recently, Hu, X. et al. reported a TLC-SERS
technique to screen pericarpium papaveris in hot pot condiments using
Support vector machine qualification analysis based on first derivative
spectra, claiming 100% screening accuracy (Hu, Fang, Han, Liu, &
Wang, 2017). However, no quantitative results were obtained and no
discussion of detection limit was included in this report. Herein, we
applied principal component analysis (PCA) and support vector re-
gression (SVR) to quantitatively analyze the TLC-SERS spectral data of
real tuna samples that spoiled at room temperature for 0, 4, 8, 12, 24,
36 and 48 h. PCA was used to extract key features as the input for the
SVR model. Compared to traditional linear PLSR model, the PCA-SVR
method achieved more accurate quantitative prediction. To the best of
knowledge, this is the first attempt to combine TLC-SERS sensing
technology with nonlinear regression machine learning method of SVR
for quantitative analysis. Our experimental results proved that an SVR-
enabled TLC-SERS device, which can be measured by a portable Raman
spectrometer, would enable a rapid, cost-effective, reliable, and quan-
titative on-site sensing method to detect trace level of seafood allergen,
and potentially many other targets in complex real biological samples.

2. Materials and methods

2.1. Materials and reagents

Diatomaceous earth, sodium carboxymethyl cellulose and histamine
(purity> 97.0%) were purchased from Sigma-Aldrich.
Tetrachloroauric acid (HAuCl4) was obtained from Alfa Aesar.
Trisodium citrate (Na3C6H5O7), anhydrous ethanol, ammonium hy-
droxide (NH4OH, 28%) were purchased from Macron. Trichloroacetic
acid (crystalline) was obtained from Fisher Chemical. Tuna meat was
purchased from local supermarkets. The chemical reagents used were of
analytical grade. Water used in all experiments was deionized and
further purified by a Millipore Synergy UV Unit to a resistivity of
18.2 MΩ cm.

2.2. Fabrication of diatomaceous earth TLC plates

The diatomaceous earth TLC-SERS plates were fabricated by spin
coating on glass slides. The diatomaceous earth was first dried at 150 °C
for 6 h in an oven, after cooling to room temperature, 12 g of diato-
maceous earth was dispersed in 20mL of 0.5% aqueous solution of
carboxymethyl cellulose and then spread on the glass slide by spin
coating at 800 rpm for 20 s. In order to improve the adhesion to the
glass slides, the plates were placed in the shade to dry and then acti-
vated at 110 °C for 3 h.
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2.3. Preparation of Au NPs

All glassware used in the Gold nanoparticles (Au NPs) prepare
process was cleaned with aqua regia (HNO3/HCL, 1:3, v/v) followed by
washing thoroughly with Milli-Q water. Au NPs were prepared using
sodium citrate as the reducing and stabilizing agent according to the
literature (Grabar, Freeman, Hommer, & Natan, 1995). Briefly, a total
of 100mL of 1mM chloroauric acid aqueous solution was heated to the
boiling point under vigorous stirring. After adding 4.2mL of 1% sodium
citrate, the pale yellow solution turned fuchsia quickly. The colloids
were kept under reflux for another 20min to ensure complete reduction
of Au ions. After cooling to room temperature, the colloids were cen-
trifuged at 9000 rpm for 15min.

2.4. TLC-SERS method

Scheme 1 shows the procedure of the diatomaceous earth TLC-SERS
method for the detection of histamine from tuna fish samples. We
processed fresh tuna meat immediately after purchasing from a local
super market. The tuna meat was first completely grinded by a blender
and a homogenizer. For artificial histamine-spiked tuna solution pre-
paration, 2 g blended tuna meat were mixed with 10ml trichloroacetic
acid (10%) with ultrasonic extraction for 3min and then the samples
were spun in a centrifuge at 6000 rpm for 5min. 2 μL supernatant was
mixed with 2 μL of histamine-water solutions by a pipette. For real
spoiled tuna samples with different spoilage time, every 2 g blended
meat was transferred to a falcon tube. They were sotred at room tem-
perature for 0, 4, 8, 12, 24, 36 and 48 h respectively. After these tuna
samples were spoiled, the same ultrasound and centrifuge processes
were conducted and 50-μL supernatant was taken for TLC-SERS ex-
periment.

Then, 1-μL liquid was spotted using a micro-pipette at 12 mm from
the edge of the diatomaceous earth TLC plate. After drying in air, the
TLC plate was kept in a TLC development chamber with mobile phase
eluent for 10min and then the TLC plate was dried in an oven for 1min.
Pauly's reagent visualization was used to show the histamine spot on
the TLC plate (Tao et al., 2011). The retention factor (Rf) of the analyte
on the TLC plate was calculated and marked so that the analyte spot
could be traced even when they are not visible at low concentrations.
Next, 2 mL solution of concentrated Au NPs were deposited on the spot
by drop casting. A portable Raman spectrometer with an excitation
laser wavelength of 785 nm was used to obtain the SERS signals. The
laser power, the scanning range, the optical resolution, and the in-
tegration time were set as 30mW, 500-1800 cm−1, 2 cm−1, and
5000ms respectively. Each SERS measurement was averaged three
times.

2.5. Instrumentation

BWS465-785S portable Raman spectrometer equipped with a
785 nm excitation wavelength of Globar source (BW&TEK Inc) was used
for acquiring SERS spectra. Diatomaceous earth TLC plates were fab-
ricated using a MTC-100 vacuum spin coater. UV–vis absorption spectra
were recorded by a NanoDrop 2000UV–Vis spectrophotometer (Thermo
Scientific) using polystyrene cells of 1 cm optical path. Scanning elec-
tron microscopy (SEM) images were acquired on FEI Quanta 600 FEG
SEM with 15–30 kV accelerating voltage. Quintix24-1s Sartorius
quintix, isotemp stirrer, fisher mini vortexer and sorvail legend X1
centrifuge (Thermo Scientific) were also used in the experiments.

2.6. Support vector regression and spectral data analysis

Machine learning algorithms were applied to resolve the inter-
ference in the SERS spectra due to intrinsic random natures of both the
TLC process and SERS measurement. PCA is a powerful multivariate
statistical technique which has been widely used in SERS sensing for
dimension reduction and feature extraction for spectral analysis (He
et al., 2011; Jarvis, Brooker, & Goodacre, 2004). The PCA method re-
duces data redundancy and produces a new set of orthogonal variables
called principal components and projects the original data into the
lower-dimension principal component feature space, which accounts
for most of the variance and the key information of the original data
simultaneously.

For the quantitative analysis, PLSR is a basic tool for modeling the
linear relationship between the digitalized spectra data and the inter-
esting chemical index in chemometrics. However, the TLC-SERS spectra
of complex real tuna samples may be affected by many nonlinear fac-
tors, which makes nonlinear analytical methods more effective. SVR is
an ideal supervised learning algorithm used for nonlinear regression
based on support vector machine. The main principal of SVR is briefly
described as follows: first, the raw data is mapped onto a higher di-
mensional feature space using the kernel functions, which is a nonlinear
mapping function. Then, with the application of mathematical optimi-
zation methods, the linear regression is performed in the higher di-
mensional feature space. Finally, the regression function in the higher
dimensional space is back-transformed into the initial data space and
used to explain the nonlinear relationship. The most important para-
meters for SVR are the kernel function and the parameter controlling
the priority of the size constraint of the slack variables. In this study, we
used radial basis function (RBF) as the kernel function (Krooshof,
Üstün, Postma, & Buydens, 2010), which is defined as − −u vexp( γ )2 ,
where u and v are the two generic sample data vectors. Parameter γ and
the penalty factor C, which was used for preventing over-fitting, were
determined by grid searching algorithm for optimal values. We

Scheme 1. Schematic representation of the diatomaceous earth TLC-SERS detection of seafood allergen from real tuna samples using portable Raman spectrometer.
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performed 5-fold cross-validation method to build the calibration
model. For each spoilage time, we randomly chose a set of 16 TLC-SERS
spectra for each spoiled time group to serve as the training dataset (112
spectra in total) and selected another 4 spectra (28 spectra in total) to
form the testing dataset. We also built a PLSR model for the comparison
with the nonlinear SVR model.

Model performance was assessed for the training and testing dataset
and compared based on four criteria that are squared correlation
coefficient (R2), root-mean-square error of cross-validation (RMSECV),
rootmeansquare error of prediction (RMSEP) and ratio of prediction
deviation (RPD). RPD is the ratio of standard deviation of RMSEP. The
RPD value accounts for the natural variation in the data to the size of
prediction errors obtained in the model, which is useful to interpret the
prediction efficiency of the model. An accurate model should have low
RMSEC and RMSEP values, high R2 and RPD.

All data processing and chemometrics algorithms were performed
with MATAB R2018a (MathWorks Inc., Natick, MA, USA). The PCA and
PLSR used the functions in MATLAB. The SVR regression model was
developed by the free LIBSVM toolbox that originally developed by
Zhiren Lin, Taiwan (accessible at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm).

3. Results and discussion

3.1. Characterization and evaluation of Au NPs-decorated diatomite
substrates

The morphology of a single diatomaceous earth and the diatomac-
eous earth layer on the glass substrate were characterized by SEM (Fig.
S1), which indicate that the main component of the stationary phase on
the TLC plate is disk-shaped diatomite biosilica with honeycomb
structure. The highly porous structure with uniform pore size
(< 100 nm) of the diatomaceous earth has low fluid flow resistance so
it enables more homogenous fluid flows into the pores, which can
perform smooth and uniform eluent migration during the TLC devel-
opment.

The UV–vis absorption spectroscopy of the prepared gold colloidal
nanoparticles was shown in Fig. S2. The localized surface plasmon re-
sonance peak is at about 528 nm with a narrow bandwidth, which in-
dicates their diameters are approximately 40 nm. According to the basis
of the Lambert's law based on UV–vis spectroscopy, the concentration of
Au nanoparticles was calculated to be about 4×10−10 M with a molar
extinction coefficient of 3.4× 1010 M−1 cm−1. Fig. S3 presented the
SEM image of the diatomaceous frustules with Au NPs, which can serve
as high performance SERS substrates as our group has reported pre-
viously (Kong et al., 2016).

3.2. TLC-SERS analysis of mixed histamine-tuna using portable Raman
spectrometer

The first step is to determine the characteristic Raman peaks of
histamine by measuring the SERS spectra of histamine in water solution
and in tuna extract using our portable Raman spectrometer. The SERS
spectra measured from standard histamine-water solution is shown in
Fig. 1(a). There are several clear histamine Raman peaks at 1264, 1302,
1313 and 1571 cm−1, which are assigned to imidazole ring stretching
and breathing (Davis, McGlashen, & Morris, 1992; Ramírez, Collado, &
Silla, 2003). The measurement results are in good agreement with the
work of Tibor et al. (Janči et al., 2017). There are some small variations
of wave numbers (less than 2 cm−1), which can be caused by equip-
ment calibration or difference of experimental conditions.

Next, we prepared artificial histamine-spiked tuna solution and
measured the SERS spectra with histamine concentration ranging from
10 to 500 ppm by the portable Raman spectrometer. From the SERS
spectra shown in Fig. 1(b), we can clearly observe the peaks at 721,
1362 and 1454 cm−1, which are not associated with histamine.

However, the peaks at 1302 and 1571 cm−1 may come from histamine
but with much larger spectral width. This is understandable because
real tuna meat contains complex components such as proteins, Amino
acid, DNAs, and tissue particles, which may induce strong interference
signals and block the access of histamine molecules to the plasmonic NP
surface.

Fig. S4 shows the SERS spectra of standard histamine-water solution
(concentration of histamine: 500 ppm), the fresh tuna extract solution
and artificial histamine-spiked tuna solution (final concentration of
histamine: 500 ppm). Indeed, the comparison in Fig. S4 shows that the
main characteristic Raman peaks of the tuna meat extract in the arti-
ficial histamine-spiked samples can create significant interference to
histamine sensing. Therefore, it is difficult to determine the presence of
histamine directly from the histamine-tuna mixture, which suggests
that TLC separation of histamine from the tuna sample is essential for
the measurement.

The TLC separation is conducted according to the procedure as
described in Section 2.4. A mixture of ethanol and ammonia (v/
v= 3:1) was used as the mobile phase eluent. The developed TLC plate
was treated with Pauly's reagent and then heated to visualize the spots
(Fig. S5). The SERS spectra of the artificial histamine-spiked tuna
samples (final histamine concentrations: 500, 200, 100, 50 and 10 ppm)
after performing TLC developments were shown in Fig. 2. The feature
peaks of histamine at 1264, 1313 and 1571 cm−1 were clearly ob-
served, which proves that the diatomaceous TLC plate can successfully
separate histamine from artificial histamine-spiked tuna mixture. The
characteristic bands exhibited monotonous decrease in intensity as the
mixture concentration decreases and the detection limit of histamine
concentration is as low as 10 ppm.

Fig. S6 compares the SERS spectra of artificial histamine-spiked
tuna solution (final concentration of histamine: 500 ppm) before and
after TLC separation. With the diatomaceous plate TLC separation, the
peaks of tuna components at 721, 1362 and 1454 cm−1 disappeared or
are significantly reduced in intensity. Meanwhile, the featured SERS
peaks of histamine are promoted, which correlate well with the SERS
spectra in the standard histamine-water solution.

3.3. TLC-SERS screening of histamine in real spoiled tuna samples

As a comparison, direct SERS sensing without TLC was also con-
ducted for each spoiled tuna sample. The SERS spectra without and
after TLC development were shown in Fig. 3 (a) and (b) respectively. It
can be clearly seen from the spectra comparison that the feature Raman
peaks of histamine were weak or obscured of spoiled tuna samples
without performing TLC development. The peak at 721 cm−1 is as-
signed to the amino group (-NH3

+) deformation vibration and the
1454 cm−1 is associated with the C–H deformation vibration of protein.
During the spoilage process, not only histamine is produced, but also
the concentration of amino groups increases due to tuna meat decom-
position. Therefore, regular SERS will detect the peaks related to both
histamine and amino groups as shown in Fig. 3(a). These peaks will
have the same increasing trend as the spoilage time increases. However,
after TLC separation, the interference peaks of 721 and 1454 cm−1

disappeared as shown in Fig. 3(b) as the amino groups are separated,
and the 1313 and 1571 cm−1 Raman peaks of histamine were clearly
observed though were not very sharp, while the 1264 cm−1 Raman
peak is less prominent compared with the SERS spectra from the his-
tamine-spiked tuna solution. We collected the SERS spectra of 0 h
spoilage time sample, that is, the fresh tuna meat sample containing no
histamine. For such fresh sample, no histamine signature peaks can be
found as shown in Fig. 3. When the spoilage time increases, the hista-
mine signature peak starts to appear and the intensity also increases.
This proves from another angle, that the 1313 and 1571 cm−1 peaks
cannot come from the natural ingredients from fresh tuna.

The spectra for fresh tuna supernatant, standard histamine-water
solution (500 ppm) and supernatant from the tuna spoiled for 24 h
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without and after TLC procedure were all shown in Fig. S7. The peaks
and shape of the SERS spectra between the TLC-SERS result and the
standard histamine solution are relatively consistent. The 20 SERS
spectra of tuna sample spoiled for 24 h without TCL and with TLC were
shown in Fig. S8, which shows reasonable repeatability but with certain
level of variation. Therefore, it is very convincing to conclude that TLC

suppresses the interference from real food matrix efficiently and TLC-
SERS method can directly provide qualitative screening of histamine
from real spoiled tuna samples.

3.4. Quantitative analysis of histamine level in real spoiled tuna samples

In order to quantitatively analyze the histamine level in spoiled tuna
samples, we first conduct a simple univariate analysis. For the mea-
sured samples, we plotted the intensity of the two feature Raman peaks
of histamine at 1313 cm−1 and 1571 cm−1 with standard error versus
the spoilage time as shown in Fig. 4. It can be seen that the intensity of
these two characteristic peaks with TLC development is significantly
higher than that of the samples without the TLC procedure. In addition,
there is better correlation between the Raman peak intensity and the
spoilage time using TLC-SERS. Overall speaking, the intensity will in-
crease as the spoilage time is longer. While for the data without TLC
procedure, the trend is not clear.

It can also be seen from Fig. 4 that the standard error of the Raman
peak intensity of samples with TLC development is relatively large,
which comes from the intrinsic random natures of both the TLC process
and SERS measurement. From such simple univariate analysis, it is
difficult to obtain accurate quantitative results due to the poor linearity
between the Raman peak intensity versus the spoilage time. Therefore,
nonlinear chemometrics methods should be used to determine the
spoilage time of real tuna samples, which can be used to evaluate the
allergen level.

For further spectral analysis, PCA was first carried out to extract the

Fig. 1. (a) SERS spectra of standard histamine-water solution at different concentrations; (b) SERS spectra of artificial histamine-spiked tuna solution at different
concentrations.

Fig. 2. TLC-SERS spectra of artificial histamine-spiked tuna solution with dif-
ferent histamine concentrations.

Fig. 3. (a) SERS spectra of real spoiled tuna samples at different spoilage hours without TLC; (b) after conducting TLC development.
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key features and reduce the dimensionality prior to develop a predic-
tion model using SVR algorithm. As shown in the PCA plot in Fig. 5(a),
the seven groups of the SERS spectra without TLC development were
mixed together and were difficult to distinguish. As a comparison, the
principal components (PCs) of the SERS spectra after TLC developing in
Fig. 5(b) were clustered with each spoilage time and for each spoilage
time dataset, they were well separated from each other. In this analysis,
the first three PCs of the SERS spectra account for 89.22% and 79.58%
of the variance for the seven groups of spoiled tuna samples without
executing TLC and with executing TLC, respectively. The values of
89.22% and 79.58% prove that the first three principal components

account for most of the variance and are sufficient to represent the data
by the scattering plots as shown in Fig. 5. The weights of these PCs are
PC1 85.112%, PC2 3.091%, PC3 1.02% and PC1 49.92%, PC2 17.02%,
PC3 12.64% accordingly.

The basic process of PCA is to project the raw spectra into the
principal component coordinates. The values in the scatter plot of
Fig. 5, namely the PC scores, are obtained by orthogonal transforma-
tion. Clustering of the PCs shown in Fig. 5 (b) indicated that there is
some systematic change of the extracted solution from the tuna meat
with respect to the spoilage time. For example, the PCs of tuna samples
with short spoilage time (0, 4, 8, and 12 h) are clearly separated from

Fig. 4. (a) Intensity distribution of the SERS spectra of six different spoilage time at 1313 cm−1 peak; (b) at 1571 cm−1 peak.

Fig. 5. (a) PCA scatter plot of the SERS spectra of the seven real tuna samples for different spoilage time without TLC and (b) after TLC development.

Fig. 6. (a) Relationship between R2 and RMSE values with the number of PCs. (b) PCA-SVR calibration curves of the predicted spoilage time and actual spoilage time.
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the samples with longer spoilage time (24, 36 and 48 h). This indicates
the significant difference of the Raman spectra due to the increase of
histamine levels. Furthermore, the spoiled samples with different time
also form four relatively separated groups: 0 h, 4–8 h, 12 h, and
24–48 h, although some dataset may have slight overlap, which is due
to the random factors of the TLC-SERS measurement.

After PCA feature extraction, a SVR model was constructed with the
training dataset and was further evaluated using a testing dataset. The
R2 and RMSE values of the training and testing dataset against the
number of principal components are presented in Fig. 6 (a). From these
plots, it can be found that in the range of five to seven of the number of
the principal components, the R2 get to the relative maximum values
and the RMSE reach the relative minimum values. Therefore, six prin-
cipal components (capture 86.91% of the variation or information
contained in the spectra) were chosen to construct the SVR model. Grid
searching method was conducted in the search range [2−10 210] to
determine the optimal values for the two key parameters (γ for the RBF
kernel and C for the SVR). Various pairs of (C, γ) values were tested and
the best parameters pair (64, 4) with the best cross-validation accuracy
is picked at last. Based on the optimal model, the calibration curves for
the actual spoilage time and predicted spoilage time in both the training
and testing sets were shown in Fig. 6(b). It can be seen that the pre-
dicted spoilage time was very close to the actual spoilage time for each
sample.

We also performed linear PLSR model for comparison and the ca-
libration curves for the actual spoilage time and predicted spoilage time
were shown in Fig. S9. Quantitative modeling results obtained by the
PLSR and SVR are shown in Table 1. From the comparison of TLC-SERS
results, the regression model constructed based on SVR showed much
better performance with higher R2, RPD and lower RMSECV, RMSEP
than those of the PLSR model, which indicates that the SVR model has
the better predictive ability. These results were attributed to the fact
that the SVR model can grasp more nonlinearities between the SERS
spectra and the TLC-SERS procedure. As a comparison, PLSR is in-
herently a linear modeling method, which makes it difficult to account
for the nonlinear relationship. Interestingly, SVR shows comparable or
even slightly worse performance than PLSR for the SERS only mea-
surement without performing TLC, which means TLC separation is a
necessary technique for machine learning analysis.

4. Conclusions

In this study, we have developed a quantitative TLC-SERS sensing
method to detect histamine from artificial and real spoiled tuna samples
with SVR analysis. The diatomaceous earth TLC plates used herein not
only separate histamine from complex tuna meat matrix, but also serve
as ultra-sensitive SERS substrates to enhance the detection limit down
to 10 ppm, which is far below the 50 ppm safety level set by US FDA. In
addition, we applied the TLC-SERS sensing techniques to detect hista-
mine from real spoiled tuna samples. Using the PCA-SVR algorithm to
analyze the SERS spectra, we are able to build an accurate quantitative
model to evaluate the histamine level with respect to the spoilage time
in real tuna samples. Considering that TLC is one of the low cost ana-
lytical chemistry methods and the affordability of portable Raman

spectrometers, the reported SVR-enabled TLC-SERS sensor would en-
able a rapid, cost-effective, and quantitative on-site detection technique
for histamine in seafood. From an even broader sense, the developed
method proves that a cost-effective TLC-SERS technique, which are
rapid but suffer low sensitivity and can only perform qualitative sen-
sing, can be transformed into a sensitive, accurate, and quantitative
sensing technique through machine-learning methods. It may also open
the gates for many other chemical and biological sensing applications
such as drug detection, water quality measurement, and homeland se-
curity.
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